Magic-F1 transgene cooperates with Pax 3 during early myogenesis to induce muscular hypertrophy

Flavio Ronzoni, Gabriele Ceccarelli, Stefano Biressi, Daniela Galli, Marco Cassano, Laura Benedetti, Luigi Vercesi, Gabriella Cusella and Maurilio Sampaolesi

Institute of Human Anatomy, Department of Public Health, Neuroscience, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy

Met-Activating Genetically Improved Chimeric Factor-1 (Magic-F1) is a human recombinant protein derived from hepatocyte growth factor/scatter factor (HGF/SF) and consists in two Met-binding domains repeated in tandem and separated by an artificial linker. It has a reduced affinity for Met and, in contrast to HGF, it elicits activation of the AKT but not the ERK signaling pathway. We recently showed that Magic-F1 induces muscle cell hypertrophy but not progenitor cell proliferation, both in vitro and in vivo where a transgenic mouse express the recombinant protein exclusively in skeletal muscle tissue [1]. Here, we examined the temporal and spatial expression pattern of Magic-F1 in comparison with Pax3 (paired box gene 3) transcription factor during embryogenesis [2]. Ranging from 9.5 to 17.5 dpc (days post coitum) mouse embryos were analyzed by in situ hybridization using whole mounts during early stages of development (9.5-10.5-11.5 dpc) and cryostat sections for later stages (11.5-13.5-15.5-17.5 dpc). We found that Magic-F1 is expressed in developing organs and tissues of mesenchymal origin, where Pax3 signal appears to be downregulated respect to the wt embryos. These data suggest that Magic-F1 could be responsible of muscular hypertrophy, cooperating with Pax3 signal pathway in skeletal muscle precursor cells.

References


Keywords: Skeletal muscle hypertrophy, human recombinant protein, FISH analysis, early myogenesis, c-Met signaling.