Anti-fibrotic effect of a novel PPAR-γ ligand, GED-0507-34 LEVO, in DSS induced colonic fibrosis in mice

Antonella Vetuschi1, Roberta Sferra1, Simona Pompili1, Silvia Speca1, Pierre Desreumaux2, Eugenio Gaudio3 and Giovanni Latella1

1School of Medicine, University of L’Aquila, L’Aquila, Italy
2School of Medicine, Universite’ Lille Nord de France, Lille, France
3School of Medicine, University of Rome “La Sapienza”, Roma, Italy

Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) in which chronic inflammation leads to abnormal deposition of extracellular matrix components (ECM) causing obstruction and loss of function of the intestinal tract involved (1). Fibrogenesis is mainly regulated by transforming growth factor (TGF) β/Smad pathway and a key antagonist of this signaling is represented by peroxisome proliferator-activated receptor (PPAR)-γ. As the anti-inflammatory drugs currently used in IBD are unable to improve intestinal fibrosis the exploration of new therapeutical approaches has now become crucial (2). Aim of this study is to evaluate the antifibrotic action of a novel PPARγ agonist, GED-0507-34-LEVO (GED), in colon fibrosis in mice.

Chronic colitis and fibrosis were induced in C57BL/6 mice by administration of 2,5% (w/v) dextrane sulphate sodium (DSS) in drinking water for 5 days followed by 7 days of water for 3 cycles. Mice were divided into 3 groups: DSS, DSS+GED and control. 30mg/Kg/mice of GED was daily administrated by oral gavage starting from the second DSS cycle. Samples from colon were excised and processed to assess macroscopic lesions, histological and morphometrical aspects and immunohistochemical and immunoblotting analysis for TGFβ1, CTGF, collagen types I-III, Smad3, α-SMA.

Evident shortening and dilation in the most of colons of DSS treated mice were observed. Macroscopic and microscopic findings were significantly improved in DSS mice+GED compared with control mice. The tissue levels of collagen and α-SMA, specific markers of fibrosis, resulted significantly increased in mice receiving DSS compared to control mice, as well as the expression of TGFβ1, CTGF, Smad3. DSS+GED group showed reduced expression of all markers involved.

GED significantly improves the intestinal fibrotic lesions in DSS chronic colitis murine model and controls the pivotal molecular events leading to fibrosis.

References


Key words

Animal models, Intestinal Fibrosis, TGFβ1/Smads.