Identification of a subset of human Natural Killer cells expressing high levels of Programmed Death 1: A phenotypic and functional characterization

Silvia Pesce 1 - Marco Greppi 1 - Giovanna Tabellini 2 - Fabio Rampinelli 3 - Silvia Parolini 2 - Daniel Olive 4 - Lorenzo Moretta 5 - Alessandro Moretta 1 - Emanuela Marcenaro 1

1 Department of Experimental Medicine (DI.ME.S.), University of Genoa, Genoa, Italy - 2 Department of Molecular and Translational Medicine, Brescia Italy - 3 Department of Obstetrics and Gynecology, Spedali Civili of Brescia, Brescia, Italy - 4 CRCM, Equipe Immunité et Cancer, INSERM, U1068; Institut Paoli-Calmettes; Aix-Marseille Université, UM 105; CNRS, UMR7258, F-13009, Marseille, France – 5 Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy

Background: PD-1 is an immunological checkpoint that limits immune responses by delivering potent inhibitory signals to T cells upon interaction with specific ligands expressed on tumor/ virus-infected cells, thus contributing to immune escape mechanisms (1). Therapeutic PD-1 blockade has been shown to mediate tumor eradication with impressive clinical results. Little is known on the expression/function of PD-1 on human NK cells (2). Objective: To clarify whether human NK cells may express PD-1 and analyze their phenotypic/functional features. Methods: Multiparametric cytofluorimetric analysis of PD-1+ NK cells and their functional characterization by degranulation, cytokine production and proliferation assays. Results: We provide unequivocal evidence that PD-1 is highly expressed (PD-1bright) on a NK cell subset detectable in the peripheral blood of approximately one fourth of healthy individuals. These donors are always serologically positive for HCMV. PD-1 is expressed by CD56dim but not by CD56bright NK cells and is confined to fully mature NK cells characterized by the NKG2A-KIR+CD57+ phenotype. The proportions of PD-1bright NK cells were higher in the ascites of a cohort of ovarian-carcinoma patients suggesting their possible induction/expansion in tumor environments. Functional analysis revealed a reduced proliferative capability in response to cytokines, low degranulation and impaired cytokine production upon interaction with tumor targets. Conclusions: We have identified and characterized a novel subpopulation of human NK cells expressing high levels of PD-1. These cells have the phenotypic characteristics of fully mature NK cells and are increased in ovarian-carcinoma patients. They display low proliferative responses and impaired anti-tumor activity that can be partially restored by antibody-mediated disruption of PD-1/PD-L interaction.

This work was supported by grants awarded by Associazione Italiana per la Ricerca sul Cancro (AIRC-) Special Project 5x1000 no. 9962 and AIRC-IG 2014 Id. 15704 (Alessandro Moretta), AIRC-IG 2014 Id. 15283 (Lorenzo Moretta), Progetto di Ricerca di Ateneo 2014 (Emanuela Marcenaro) and Olive Daniel laboratory is supported by the Fondation pour la Recherche Médicale (Equipe FRM DEQ20140329534).

References


Keywords

Natural Killer cells; programmed death receptor (PD-1); ovarian carcinoma; tumor escape; immune checkpoint; NK cell degranulation; NK cell proliferation; NK cell cytokine production; CD57+ NK cells; CMV.