**Fusarium rot of Orobanche ramosa parasitizing tobacco in southern Italy**

**Bruno Nanni, Ester Ragozzino and Fabrizio Marziano**

Dipartimento di Arboricoltura, Botanica e Patologia vegetale, Università degli Studi “Federico II” di Napoli, Via Università 100, 80055 Portici, Italy

**Summary.** In tobacco crops grown in the province of Caserta (southern Italy), we noted, for the first time in Italy, very many broomrape (*Orobanche ramosa*) plants exhibiting mycosis caused by a strain of *Fusarium oxysporum* that is not pathogenic to tobacco. After a brief description of the symptoms of the disease and its incidence in the field, we discuss, on the basis of the observations made and the data supplied by the literature, the feasibility of using this fungus in programmes to control *Orobanche*.

**Key words:** *Fusarium oxysporum*, branched broomrape, biological control, pest control.

**Introduction**

During the spring-summer of 2002, in an extensive area around Recale in the province of Caserta (southern Italy) where tobacco has been grown for over 30 years, a series of field observations were carried out to establish the occurrence of viral infections in tobacco. At the end of June very extensive populations of broomrape (*Orobanche ramosa* L.) were noted that were showing diffuse necrosis with such rapid acropetal progression that often the flowers differentiated but seed capsules were not produced (Fig. 1).

The necrosis caused high mortality in *O. ramosa* but the roots of tobacco plants affected with diseased broomrape were undamaged, because of the extremely quick necrosis of the broomrape tissues.

The undeniable potential utility of this phenomenon, the lack of information to be found on the subject in the relevant literature, and the interest currently shown by the scientific community in alternative ways to control crop pathogens all justify this contribution to the subject.

**Materials and methods**

The pathogen was isolated in pure culture on potato dextrose agar (PDA Difco) in Petri dishes. To study the incidence of the disease only in 2002, we chose a field that was intensely and widely affected, and just over 1 ha of which was given over to tobacco cultivation. Observations were made in three areas of 3 m² each, spaced 3 m apart, positioned along an imaginary diagonal line passing through two of the corners of the field (Fig. 2). Each area consisted of 65 plants spaced 25 cm apart along the rows and with 75 cm between rows. At the two ends of the diagonal we left a buffer zone of 1 m. Counts of tobacco plants parasitized by
Fusarium oxysporum in the field.

Fig. 1. *Orobanche ramosa* infected with *Fusarium oxysporum* in the field.

The outcome of artificial inoculation of *Orobanche ramosa* with *Fusarium oxysporum*.

Fig. 3. Outcome of artificial inoculation of *Orobanche ramosa* with *Fusarium oxysporum*.

**Results**

Fungal colonies isolated from field-picked *O. ramosa* plants were very frequently found; these colonies were white, tending towards more or less deep purple in the central part, reaching a diame-
after inoculation but inoculated question were completely asymptomatic 50 days gen to substantially reduced. The virulence of the pathogen with the mosa and infestation of tobacco by no relation between viral infection of after varying durations starting from 15–20 days all showed symptoms similar to those in the field in the third 51 and 47.

Tobacco plants inoculated with the isolate in question were completely asymptomatic 50 days after inoculation but inoculated *O. ramosa* plants all showed symptoms similar to those in the field after varying durations starting from 15–20 days after inoculation (Fig. 3). These plants were used to re-isolate the pathogen in question. There was no relation between viral infection of *O. ramosa* and infestation of tobacco by *Orobanche*.

**Discussion**

*Orobanche* incidence on tobacco reached very high levels, but since more than 90% of the *O. ramosa* plants in the sampled areas were infected with the *Fusarium*, damage to the tobacco crop was substantially reduced. The virulence of the pathogen to *O. ramosa* led to a significant reduction in damage caused by this plant due most likely to the decrease in inoculum potential of *O. ramosa* caused by the *Fusarium*.

This *Fusarium* infection of *O. ramosa* is reported for the first time in Italy.

In light of the results and the findings of Mazaheri *et al.* (1991), the fungus is completely harmless to tobacco crops while it is lethal to *O. ramosa*: this would make this fungus a candidate for possible use in pest control programmes against *Orobanche*. However, although there are reports of fungi that parasitize *Orobanche* spp., as specified below, there is as yet no technique to use these fungi against *O. ramosa* in the field (Amsellem *et al*., 2001). In-depth studies have however been conducted on the biological and pathogenetic characteristics of the fungus in question (Murasheva, 1995a, b) on ways to enhance its conidiogenesis (Bedi and Donchev, 1995) and on ensuring its conservation (Amsellem *et al*., 1999).

In Iran, pest control trials have shown that *F. oxysporum* reduces the amount of tobacco plant parasites by over 70% and achieves yield increases of approximately 80% (Mazaheri *et al*., 1991). In Nepal, when fungi were isolated from visibly infected plants, it was found that over 70% of the isolates were from the genus *Fusarium* (Thomas *et al*., 1999). In Hungary, during trials to control *O. ramosa* with strains of *F. solani* and *F. oxysporum* isolated from the plant test, a single treatment achieved a mortality of over 90% in the first year and about 97% in the second, showing the capacity of these fungi to survive in the soil and to maintain or even enhance their virulence over time, especially in the case of *F. oxysporum* (Hodosy, 1981). Equally encouraging results were obtained in India against *O. cumana* (Bedi and Donchev, 1995) while in Egypt some fungi isolated from the fruit of *O. crenata*, including the fungus in question here, reduced seed viability in *O. crenata* by 21–85% (Al-Menoufi, 1986).

Very encouraging results were recently achieved by Amsellem *et al.* (2001) who obtained two isolates, one of *F. arthrosporioides* and one of *F. oxysporum*, that parasitized plants of *O. ramosa*, *O. aegyptiaca* and *O. cernua* but not *O. cumana* nor the various crop plants tested: this result, reached through a series of artificial inoculations, was confirmed with an in-depth bio-molecular analysis (RFLP and RAPD) which showed the considerable genetic difference between these two isolates, and between these isolates and many other isolates of *Fusarium* spp. and *formae speciales* of *F. oxysporum*, including an isolate of *F. oxysporum* parasitizing *O. cumana*. Amsellem *et al.* (2001) also found that tomato plants, whose root apparatus had been treated with a conidial suspension and hyphal fragments of the two isolates and had then been planted in soil infested with *O. ramosa*, were completely protected for 6 weeks (Amsellem *et al*., 2001).

*Fusarium oxysporum*, together with *F. semitecum*, was also reported as a possible pest control agent for *Cuscuta* (Stojanovic and Boric, 1981). Other *Fusarium* spp. have also been indicated as possible control agents of *Orobanche*. Bozukov and Kouzmanova (1994) tested *F. lateritium* (*Gibberella baccata*) against *O. ramosa* and *O. mutelii* on tobacco; he found that the fungus was more effective when it was distributed as conidia or in the
plant’s hypogeal phase, especially between germination and tubercle formation, and that it remained effective longer if it was distributed in irrigation water.

Besides the species named, only a few other fungi are reported to be parasites on *Orobanche* spp. and hence are potential pest control agents; the list seems limited to *Botrytis cinerea* on *O. fasciculata* near Washington (USA) (Shaw, 1973; Farr et al., 1989), *Thielaviopsis basicola* (=*Chalara elegans*) on *O. ramosa* in the Ukraine (Popova, 1929), *Colletotrichum lagenarium* on *O. aegyptiaca* in eastern Europe (Stankevich, 1971; Prokudina, 1973), *Sclerotium rolfsii* on *O. cernua* in Indian tobacco crops (Raju et al., 1995), and *Ulocladium atrum* isolated, together with a *Fusarium* sp. and an *Alternaria* sp., from plants of *O. crenata* and *O. minor* picked in Syria, Morocco and France, and which destroyed the tubercles in the soil or the sprouts which had just emerged (Linke et al., 1992).

Considerable attention is currently being focused on the micromycetes that control pests and parasites biologically (Sauberborn, 1993), although recent research undertaken in Hungary has shown the scant efficacy of such methods of control with certain plant-pathogen associations, including *Fusarium* spp. and *Orobanche* spp. (Beres et al., 2000).

In examining whether certain fungi will control weeds or plant parasites, two different approaches can be followed, as reported by Müller-Schärar (2000): either a particularly efficacious isolate can be distributed in the field and its effect optimised; or alternatively a better understanding of the relationship between a crop plant, its parasite and any natural antagonists or pathogens of the latter may make it possible to act on the environmental conditions so as to maximise the spread and impact of one of the native antagonists or pathogens of the parasite. Moreover, we need to bear in mind that, despite the promise offered by *F. oxysporum* to control *O. ramosa*, the fungus may yet be found to be harmful to some crop species, making it impossible to use it as a biocontrol agent (Murasheva, 1995a).

Our survey produced encouraging data on the possibility of using micro-organisms in the biological control of *O. ramosa* in the not too distant future. This view is shared by researchers in the University of Rehovot (Israel) who are now working to produce transgenic parasites, especially fungi, that are particularly virulent against *Orobanche* spp. (Benvenuti, 2002).

Further research on the pathogenesis of the disease here described is in progress.

**Literature cited**


**Accepted for publication: May 23, 2005**