Guidati dalla consapevolezza che l’abitare è una realtà esperienziale, immersiva, dinamica (vedi Arnheim, 1977) che non si esaurisce in una dimensione contemplativa, essi pensarono la progettazione come logica rispondenza tra due entità: il contesto, che definisce il ‘problema’ e la ‘forma’ che lo risolve (Alexander, 1964). In questo modo, essi evidenziarono l’esigenza di sostenere e orientare le scelte progettuali con una fase istruttoria solida e ad ampio raggio, basata su apporti conoscitivi riferiti ad una pluralità di settori disciplinari. Tali settori riguardavano tanto le scienze sociali quanto le scienze naturali: antropometria, ergonomia, prossemica, fisiologia, sociologia, psicologia, fisica tecnica, geografia urbana, scienza dei materiali, pianificazione urbana e territoriale, economia, ecc. La conseguente matrice delle esigenze e delle attività umane da considerare nel progetto (vedi MHLG, 1968; Farstbin, 1974) risultò presto troppo complessa per essere compresa e affrontata intuitivamente: «The intuitive resolution of contemporary design problems – scriverà Alexander (1964) – simply lies beyond a single individual’s integrative grasp.». L’aspirazione ideale (che, poi, si rilevò una pretesa) a controllare e gestire questa complessità, richiese metodologie e strumenti di supporto al lavoro del progettista per misurare i fattori di interdipendenza e risolvere un numero di variabili sempre crescente (Fitch, 1972; Alexander, 1964), che trassero vantaggio dalla logica sistemica (von Bertalanffy, 1960; Alexander, 1968; Cibinib, 1970) e condussero, per una via, alle metodologie di design computazionale.

Nella visione originaria, sebbene con diverse sfumature o consapevolezza, l’obiettivo della progettazione ambientale era il benessere dell’essere umano nell’ambiente di vita. Con l’emergere della sfida ecologica, tuttavia, questa visione comprensiva, integrata e feconda di significati e di conseguenze (ad esempio, lo sviluppo
degli approcci progettuali human centered e delle metodologie performance-based e di progettazione partecipativa, ha subito un progressivo appiattimento sui temi del risparmio energetico nonché della sostenibilità e della governance ambientale. Così, la progettazione ambientale ha finito per trascurare parte della complessità, della ricchezza teorica e della tensione etica delle origini. Smarrendo, ad esempio, il senso del rapporto tra individuo, spazio e società e il concetto di "luogo" (Norberg-Schulz, 1979), ha rinunciato ad interrogarsi sul grande tema della ‘finализация’ della ricerca progettuale e ad esplorare, comprendere e sistematizzare le esigenze e le aspettative dell’abitante. In termini più generali, rifuggendosi in una forma di riduzionismo (Peccei e Ikeda, 1984) la progettazione ambientale ha, in un certo senso, sconfessato se stessa.

Questo breve saggio intende affrontare sinteticamente alcune questioni inerenti l’accessibilità, quel settore della progettazione ambientale rivolta a soddisfare l’autonomia della persona e l’inclusione sociale. L’accessibilità introduce nella progettazione ambientale e, più in generale, nella ricerca progettuale uno specifico livello di complessità. Infatti, prevedendo il superamento dell’adulto-medio-sano quale metafora dell’essere umano e il superamento della persona su sedia a ruote quale metafora della società, l’accessibilità richiede al progettista la definizione di un “quadro esigenziale” molto più articolato ma, indubbiamente, più aderente alla realtà delle cose (Lauria, 2003). L’ambiente di vita non è uno scenario neutro, ma sempre un “fattore operante” (Fitch, 1972; Canter e Lee, 1977) della vita umana. L’ambiente modella dinamicamente i comportamenti, le aspettative e le aspirazioni di chi lo abita. Questi, allo stesso tempo, interviene incessantemente nella sua trasformazione (vedi Boudon, 1969; Lamure, 1976). L’adattamento persona-ambiente (person-environment fit) è, così, un processo dinamico e bidirezionale: da una parte comporta il cambiamento dell’ambiente (fisico e sociale) verso le capacità umane; dall’altra, il cambiamento della persona verso le ‘richieste’ dell’ambiente (vedi French et al., 1982; Edwards et al., 1998). Questo processo è regolato dai bisogni umani, il punto di congiunzione come scrive Heschel (1951) - tra il mondo interiore e l’ambiente. Nel processo di adattamento persona-ambiente, la configurazione ‘fisica’ degli spazi ha un ruolo decisivo. In termini generali, si può dire che, a parità di condizioni individuali, più l’ambiente di vita è accessibile, maggiore sarà la capacità della persona di autodeterminare la propria esistenza. Questo indica che introducendo modifiche all’ambiente di vita tali da elevarne l’accessibilità, è possibile agire positivamente sul benessere della persona, sulla sua capacità di sviluppare il proprio progetto di vita e di partecipare in maniera diretta e personale alla vita collettiva e alla crescita della società. La celebre espressione di Ortega y Gasset “Io sono io e la mia circostanza”, sottolinea le reciproche influenze, l’inestricabile trama delle relazioni tra la persona e il suo ambiente di vita. Se è vero, come sostiene Ortega y Gasset, che la personalità di un essere umano non è una realtà a se stante, ma vive solo in rapporto con il mondo che lo circonda e con le cose e le relazioni che lo costituiscono, allora un ambiente di vita non idoneo non solo ostacola o impedisce lo svolgimento di attività, ma condiziona la formazione dell’io autentico dell’essere umano, la formazione della sua personalità. Quando, a causa dei condizionamenti posti dall’ambiente, una persona non può com-
is not adequate not only hinders or impedes the carrying out of activities, but also conditions the conformation of the true “I” of the human being, the constitution of his or her personality. When, due to the limits of an environment, a person cannot fulfil his own choices (in both everyday and existential terms) on the basis of his capacities and aspirations, that person suffers a restriction to his freedom, and sees his life project irreparably compromised. The living environment, however, is not limited to a physical dimension, but strongly influenced by the social structure in which a person carries out his existence (family, community and society). Pope and Brandt (1997) have described the environment as an entity that supports the person, as a sort of mat whose warp is constituted by physical factors, and whose weft is constituted by social factors.

The capacity of the environment to adequately support the life of people (expressed, in the metaphor, by the solidity of the mat) depends, on the one hand, on its physical features, and on the other on the efficiency of the social support network available in it.

Environmental accessibility
Among the fields that inform environmental design, a particularly important role is played by accessibility, which includes a wide range of environmental requirements (reachability, usability, comfort, safety, communicativeness, mobility, etc.). Accessibility expresses the level (accessibility degree) to which places, goods and services guarantee, for every person – independently of age, sex, culture, health, social status, education, physical, sensory or cognitive capacities – the possibility of developing their own life project (Lauria, 2012a).

Environmental accessibility, however, is not only a tool for ascribing value to the person, it is also a collective resource that can elevate the social capital of a community. More accessible environments, in fact, expand individual freedom, social opportunities and knowledge, encouraging every person to participate in the life of the community and to offer their contribution to the growth of society at large; at the same time, they can be more attractive, comfortable, communicative and safe, and this can be reflected in the social and economic development of a region (see Touche Ross, 1993; Buhalts et al., 2005; Darcy and Dikson, 2009; SL&A, 2013). For example, in reference to places of cultural interest, accessible environments can favour the increase of visitors and the promotion of an offer in terms of tourism that helps making local communities more active and dynamic (C.A.R.E, 2006; Arenghi et al., 2015).

The concept of accessibility has suffered through time a deep revision, due primarily to the evolution of the concept of disability, to which it is historically linked. If in the past disability was considered a condition of the individual, today it is seen as the result of a complex interaction between «persons with impairments and attitudinal and environmental barriers that hinder their full and effective participation in society on an equal basis with others» (UN, 2006, Preamble). Allo stesso modo, l’accessibilità ha subìto nel tempo una profonda revisione per effetto, innanzitutto, dell’evoluzione del concetto di “disabilità”, cui è storicamente legato. Se nel passato la disabilità era considerata una condizione della persona, oggi è vista come il risultato di una complessa interazione tra «persons with impairments and attitudinal and environmental barriers that hinder their full and effective participation in society on an equal basis with others». The concept of accessibility has suffered through time a deep revision, due primarily to the evolution of the concept of disability, to which it is historically linked. If in the past disability was considered a condition of the individual, today it is seen as the result of a complex interaction between «persons with impairments and attitudinal and environmental barriers that hinder their full and effective participation in society on an equal basis with others» (UN, 2006, Preamble). Allo stesso modo, l’accessibilità ha subìto nel tempo una profonda revisione per effetto, innanzitutto, dell’evoluzione del concetto di “disabilità”, cui è storicamente legato. Se nel passato la disabilità era considerata una condizione della persona, oggi è vista come il risultato di una complessa interazione tra «persons with impairments and attitudinal and environmental barriers that hinder their full and effective participation in society on an equal basis with others» (UN, 2006, Preamble).
Dall’iniziale interesse per le esigenze di mobilità delle persone su sedia a ruote (Goldsmith, 1963), l’accessibilità ha gradualmente esteso la propria sfera d’azione anche alle esigenze percettive delle persone con minorazioni sensoriali, intellettuali o psichiche (Goldsmith, 1997) fino ad essere riferita, oggi, alla generalità delle persone. Tale apertura d’orizzonte ha condotto al superamento delle barriere architettoniche presenti, ma necessita di una categoria altamente interdisciplinare, molto difficile da raggiungere a causa delle complessità e delle gran varietà di interessi che devono essere soddisfatti. Occorre anche considerare che nell’attività progettuale le esigenze espressive dagli utenti sono ricondotti a diverse qualifiche e con alto margine di errore, che richiedono una attenta analisi e una sintesi delle informazioni.

Di conseguenza, tipicamente, il progetto dello spazio collettivo si basa sulla generalizzazione, cioè sulla tecnica di pensiero alta, fortemente interdisciplinare, con alto margine di errore, che richiedono alla progettazione.

Quando si interviene sullo spazio collettivo, lo Universal Design rappresenta la metodologia progettuale più indicata e gestionale. Occorre, tuttavia, ammettere che lo Universal Design è di difficile attuazione e, a dispetto del nome, sempre parziale negli esiti. Innanzitutto, le soluzioni progettuali ‘universali’ sono espressione di una categoria di pensiero alta, fortemente interdisciplinare, con alto margine di errore, che richiedono al progettista qualità e risorse non proprio comuni: (1) tensione etica, (2) capacità di condurre a sintesi una pluralità di informazioni settoriali e dati sperimentali e, (3) tempo. Occorre anche considerare che nell’attività progettuale le esigenze espresse dagli utenti sono istanze ‘debolezze’ delle persone, dunque, facilmente soccombenti rispetto ad altre (in primo luogo quelle estetiche ed economiche) ritenute normalmente prevalenti (Lauria, 2012b).

Le soluzioni universali, inoltre, non potranno mai essere ottimali per tutti perché ogni profilo d’utenza ha specifiche esigenze e non di rado ciò che rappresenta una ‘buona’ soluzione per qualcuno può risultare non idonea e finanche dannosa per altri.

Il progetto dello spazio collettivo tra approccio universale e approcci specialistici

Comunemente, il progetto dello spazio collettivo si basa sulla generalizzazione, cioè sul tentativo di comprendere i fenomeni e le tendenze nella loro globalità e di definire misure e soluzioni valide per la maggior parte delle persone (e, naturalmente, coerenti con le qualità dell’ambiente che le accoglie).

When intervening on a collective space, Universal Design represents the most advisable and reasonable design methodology. It is necessary to point out, however, that Universal Design is difficult to implement and, despite its name, always partial in its results. "Universal solutions", to begin with, are the expressions of a high category of thought, with a strong inter-disciplinary character, with a high margin of error, that require from the designer uncommon qualities and resources: (1) an ethical stance, (2) a capacity to carry out a synthesis from a variety of experimental data and information derived from several fields, (3) and time.

The design of collective spaces between the universal and the specialised approaches

The design of collective spaces is usually based on generalisations, that is on the attempt to understand phenomena and trends in their globality and to define measures and solutions that are valid for the majority (and naturally also coherent with the qualities of the environment in question).

When intervening on a collective space, Universal Design represents the most advisable and reasonable design methodology. It is necessary to point out, however, that Universal Design is difficult to implement and, despite its name, always partial in its results. "Universal solutions", to begin with, are the expressions of a high category of thought, with a strong inter-disciplinary character, with a high margin of error, that require from the designer uncommon qualities and resources: (1) an ethical stance, (2) a capacity to carry out a synthesis from a variety of experimental data and information derived from several fields, (3) and time.
Sessibili differenze nell’interazione persona-ambiente si pongono, ad esempio, tra adolescenti e anziani e tra disabili motori e disabili visivi. Soluzioni progettuali che generano vantaggi per alcuni e svantaggi per altri sono molto comuni e determinano un fenomeno detto della “divergenza degli effetti” (Lauria, 2003). La consapevolezza della impossibilità (teorica, prima che operativa) di soddisfare attraverso soluzioni universali i bisogni dei diversi profili d’utenza con pari efficacia, si traduce nel ridimensionamento dell’obiettivo ragionevolmente raggiungibile dall’applicazione dello Universal Design nel progetto dello spazio collettivo: non tanto aspirare a definire soluzioni ‘perfette’ per ciascuno (cosa, di fatto, inattuabile), quanto tentare di definire soluzioni il più possibile ‘compatibili’ con le esigenze di tutti (Lauria, 2003). Essendo il risultato di una ‘mediazione’ tra istanze diverse e, non di rado, contrapposte, le soluzioni universali richiederanno sempre a una parte degli abitanti una certa capacità di adattamento nel loro rapporto con l’ambiente. Poiché questa capacità varia da persona a persona, le soluzioni progettuali universali finiscono fatalmente con l’escludere, parzialmente o totalmente, un’‘area grigia’ di popolazione costituita da quelle persone (tipicamente, disabili) le cui esigenze non sono riconosciute o considerate dal progettista e che, nel contempo, non sono in grado di adattarsi alle soluzioni universali previste.

Alla luce di queste considerazioni, la sfida per rendere gli spazi collettivi più accessibili dovrebbe essere affrontata innanzitutto su una base universale soluzioni ad hoc (inclusi i dispositivi di sensibilizzazione ambiente basati su ICT e i sistemi di automazione avanzati) volte a soddisfare le esigenze di persone con specifiche esigenze di tipo fisico, senso-percettivo, cognitivo. La stessa Convenzione ONU sui diritti delle persone disabili, peraltro, chiara rische che l’«Universal design shall not exclude assistive devices for particular groups of persons with disabilities where this is needed» (ONU, 2006).

Considerando, infine, che l’accessibilità (di un luogo, di un bene o di un servizio) è un processo senza fine, un traguardo mobile (Lauria, 2012a), il progetto dei luoghi collettivi necessiterà sempre, nel tempo, di successivi aggiustamenti (vedi Habraken, 1962; Habraken et al., 1974; Allen, 1980; Hertzberger, 1991) che potremmo definire di retrofitting esigenziale (requirement-based retrofitting) (Lauria, 2012b) per soddisfare, gradualmente, i bisogni del maggior numero possibile di persone. Rinunciando alla pretesa di offrire risposte esaustive e ‘definitive’, le strategie di design accessibile si pongono come efficace metafora dei limiti delle capacità del progettista di fronte alla complessità dell’essere umano e dell’abitare.

Conclusioni

Se, come immaginavano i padri della progettazione ambientale, la qualità di un progetto dipendesse unicamente dalla qualità della costruzione dei dati di contesto (quadro esigenziale e dati del luogo), allora il ‘progetto’ equivarrebbe al suo ‘processo’. Se così fosse, si negherebbe il contributo individuale all’evoluzione dell’espressione architettonica e la stessa dimensione creativa dell’atto progettuale. La creazione è sempre un ‘salto nel buio’ e segue strade spesso imperscrutabili (Aalto, 1940): come amava dire Ernesto Rogers, l’architetto, nel proprio lavoro, si trova spesso nella condizione di «avant trouver, après chercher» (cit. da Helg, 1978).

Detto questo, il contributo offerto dalla progettazione ambientale alle discipline del progetto è indiscutibile. Essa, infatti, ha

It is also necessary to consider that in design activities the needs expressed by the end-users are ‘weak’ instances, and therefore easily neglected in comparison to others (first of all aesthetic and economic considerations) which usually prevail (Lauria, 2012b). Universal solutions, additionally, will never be able to be optimal for all users, because each group of end-users has specific needs, and often what is a ‘good’ solution for some can be the opposite for others. Sensitive differences in the person-environment interaction occur, for example, between teenagers and the elderly; or between those who are motor disabled and those who are visually impaired. Design solutions which generate advantages for some and problems for others are very common, and determine a phenomenon known as “divergence of effects” (Lauria, 2003).

The awareness of the impossibility (theoretical, then operative) of satisfying with universal solutions the needs of the various groups of users with equal efficiency is translated into the downsizing of the aims that are reasonably obtainable through the application of the Universal Design of a collective space: not so much aspiring to solutions which are ‘perfect’ for every single person (which is, in fact, impossible), as attempting to define solutions that are as compatible as possible with the needs of everybody (Lauria, 2003). Since they are the result of a ‘mediation’ between a variety of instances which are often opposed, universal solutions will always require from a segment of the inhabitants a capacity for adapting to the environment. Since this capacity varies from person to person, universal design solutions inevitably result with the partial or total exclusion of a grey area of the population, consisting in those people (usually disabled) whose needs are not recognised or considered by the designer and who, at the same time, are incapable to adapt to the universal solutions envisaged.

In the light of these considerations, the challenge to make collective spaces more accessible must be addressed by grafting ad hoc solutions to a universal design (including ICT-based devices for sensitising the environment and advanced automation systems) aimed at satisfying the requirements of people with specific physical, sensory-perceptual and cognitive needs. The UN convention on the rights of persons with disabilities, establishes that «Universal design shall not exclude assistive devices for particular groups of persons with disabilities where this is needed» (ONU, 2006).

Considering, finally, that the accessibility (of a place, a good or a service) is a permanently ongoing process, a moving aim (Lauria, 2012a), the design of collective places will always require a series of adjustments through time (see Habraken, 1962; Habraken et al., 1974; Allen, 1980; Hertzberger, 1991), that we could define as a requirement-based retrofitting (Lauria, 2012b) for gradually satisfying the needs of the largest possible number of people. Giving up the presumption to offer comprehensive and ‘definitive’ solutions, accessible design strategies appear as an efficient metaphor for the limits of the capacity of the designer when facing the complexity of the human being and of dwelling.

Conclusions

If, as the founding fathers of environmental design imagined, the quality of a project depends only on the quality of
Il processo progettuale assicura la risoluzione di problemi umani in una situazione sociale, consentendo la porre la questione della responsabilità sociale del progettista in forma coerente con i problemi umani in una civiltà industriale.

Tra i diversi saperi che fanno riferimento alla progettazione ambientale, l’accessibilità è quello che più si interroga sui bisogni e sulle aspettative dell’abitante. L’accessibilità, frammentando il modello astratto (l’adulto-medio-sano) rispetto a cui è avvenuto il grande processo di antropizzazione del mondo in una pluralità di profili esigenziali, introduce nella disciplina progettuale un elemento di puro realismo che risponde ad un’esigenza di equità e inclusione sociale.

NOTE

3 L’International Classification of Functioning, Disability and Health (ICF) distingue tra “capacità” e “performance”: la prima è riferita a ciò che una persona riesce a fare in un ambiente sconosciuto; la seconda, a ciò che riesce a fare nel suo abituale (e generalmente adattato) ambiente di vita (WHO, 2001).

5 Per l’ICF i “fattori ambientali” sono “the physical, social and attitudinal environment in which people live and conduct their lives. Essi sono: (a) products and technology, (b) natural environment and human-made changes to environment, (c) support and relationships, (d) attitudes, and (e) services, systems and policies” (WHO, 2001).

6 È opinione dello scrivente che le persone disabili sarebbero i primi beneficiari del processo di afiancamento dell’accessibilità alla disabilità. Sebbene sarà sempre necessario attuare soluzioni ad hoc per risolvere specifici problemi di specifici abitanti, si può ritenere che quanto meno l’accessibilità si identificerà con le persone disabili e quanto più da cultura esperta diverrà cultura comune tanto più riuscirà a soddisfare le loro esigenze.

7 Solo per fare degli esempi, si pensi ai disagi che le pavimentazioni tattili possono determinare per le persone anziane con problemi di mobilità (Thies et al., 2008) o al pericolo che gli “shared spaces” (Department for Transport, 2001; GDBA, UCL, 2008; Parkin and Smithies, 2012) o alcune soluzioni integrate rampa-scala rappresentano per le persone cieche. Su questo argomento si veda Lauria (2016).

Ciribini, G. (1970), "Il territorio come sistema di componenti umane, naturali e tecnologiche", in AA.VV. Politica, habitat e nuova tecnologia, Ente Fiere di Bologna, Bologna.

Eco, U. (1968), La struttura assonante, Milano, Bompiani.

References

As an example, consider the problems that tactile pavement can represent for elderly people with mobility issues (Thies et al., 2008) or to the danger of "shared spaces" (Department for Transport, 2001; GDBA, UCL, 2008; Parkin and Smithies, 2012) or some ramp-stairway combined solutions represent for the blind. On this argument see Laurìa (2016).

The divergence of effects often derives from an inadequate understanding by the designer of the various categories of needs. It is an example of a “heterogeneity of ends”, a phenomenon in which — according to the Italian philosopher Giovan Battista Vico — human actions obtain unforeseeable results (different or often even opposed) in relation to the desired intentions and aims. See: Vico, G.B. La scienza nuova (1774). BUR, Milano, 1996, pp. 176 and ff.
Designing for the Disabled
Reading. Available at www.cege.ucl.ac.uk/arg/pamela/Documents/Sha-
paths in a Shared Space environment.
Testing proposed delineators to demarcate pedestrian

GDBA, UCL (2008),
of job stress and strain
French, J.R.P. Jr., Caplan, R. D. and Harrison, R. V. (1982),
The mechanisms
doing the Shared Space, Wiley, London.

Fitch, J.M. (1972), American Building: The Forces that Shape it, Houghton

Fitch, J.M. (1947),
American Building: The Forces that Shape it, BT Batsford,

American Building: The Forces that Shape it, Houghton

Friedman, Y. (1971), Pour l'architecture scientifique, Belford, Paris (Italian

French, J.R.P., Jr., Caplan, R.D. and Harrison, R.V. (1982), The mechanisms
doing the Shared Space, Wiley, London.

GDBA, UCL (2008), Testing proposed delineators to demarcate pedestrian
paths in a Shared Space environment. Guide Dogs for the Blind Association,
Reading. Available at www.cege.ucl.ac.uk/arg/pamela/Documents/Sha-
redSpaceDelineators.pdf. [accessed January 9, 2017]

Goldsmith, S. (1963), Designing for the Disabled, Royal Institute of Archi-

Goldsmith, S. (1997), Designing for the disabled. The new Paradigm. Archi-
tectural Press, Oxford.

pp. 298-304.

Gregory, S.A. (1966) (Ed.), The Design Methods, Botterworths, London (Ita-

Habraken, N.J. (1962), De Dragers en de Mensen, Scheltema en Holkema,

Habraken, N.J., Boekholt, J.T., Thijssen, A.P. and Dijens, P.J.M. (1974), Vari-
ations: the Systematic Design of Supports, MIT Press, Cambridge and Lon-
don.

Hertzberger, H. (1991), Lesson for Students in Architecture, Uitgeverij 010

Helg, F. (1978), “Tecnologia dell Architettura”, in Belgiojoso, L.B. Pandako-
vic, D., Ferioli, R., Helg, F., Fazzini, C., Caputo, P. and Belgioioso, A.B., Otto
argomenti di architettura, Edizioni il Formichiere, Milano.

Heschel, A.J. (1951), Man Is Not Alone: A Philosophy of Religion by Abraham
Joshua Heschel, Farrar, Straus & Giroux, New York (Italian Edtion Monda-
dori, 1998).

Jones, J.C., Thornley D.G. (Eds.) (1963), Conference on Design Methods,

Lauria, A. (2003), “Esigenze dell’uomo e progetto”, in Lauria, A. (Ed.), Per-
sone “reali” e progettazione dell’ambiente costruito. L’accessibilità come risorsa
della qualità urbana. Maggiori, Rimini.

Lauria, A. (Ed.) (2012a), I Piani per l'Accessibilità. Una sfida per promuovere
l'autonomia dei cittadini e valorizzare i luoghi dell’abitare, Gangemi, Roma.

Lauria, A. (2012b), “Human requirement-based design in the cultural di-
mension of living”, in Bolci R., Gambero M. and Tartaglia A. (Eds.), Research
among innovation, creativity and design, FUP, Firenze, pp. 409-439.

Guidebook for Cultural Towns Inspired by Universal Design Appro-