L'economia connessa all'allevamento degli ovini è oggetto di un declino complessivo che riguarda sia la produzione alimentare sia la commercializzazione della lana. Lo dimostra il prezzo del latte e della carne che da oltre un decennio diminuisce senza soluzione di continuità riducendo i margini di profitto per gli allevatori, e la sostanziale invendibilità della lana ottenuta dalla tosatura delle pecore. Fino all'inizio degli anni Novanta la tosatura veniva effettuata due volte l'anno, riducendo i cicli di lavaggio e pulizia della lana succia, assicurando una migliore qualità del prodotto e garantendo agli allevatori un discreto guadagno. Oggi la lana tende per lo più a caratterizzarsi come rifiuto speciale per il quale non è possibile prevedere ricavi, ma solo costi (tre euro a capo per la tosatura, cui bisogna aggiungere gli oneri di smaltimento). La filiera produttiva, che comprende l'allevamento, la mungitura, la tosatura e la macellazione, è la maggiore responsabile della recessione in atto. Il sistema produttivo per il latte e la carne prevede un numero elevato di passaggi, dal semilavorato al prodotto finito. Nel caso della lana la filiera è, al contrario, sostanzialmente assente. Manca altresì un sistema organizzato a scala locale in grado di valorizzare il materiale tosato trasformandolo in una materia prima seconda. Gli effetti combinati della crisi sono più intensi in Sardegna, dove si

A sustainable building product: advanced insulation panels obtained by recycling regional sheep's wool

Abstract. The article deal with an ongoing research aimed at developing an advanced self-bearing panel, fitted for thermal and acoustic insulation of buildings, derived from the reuse and recycling of local sheep wool. The development of a supply chain of environmentally friendly products (a self bearing panel made of 100% wool) encourages, on the one hand, the use of a material so far classified in Italy as special waste and, on the other, provides new opportunities for a sheep-farming that it is now going through an economic recession, with positive effects on the mountain and the hill landscape.

Key words: Recycling wool sheep, Wool advanced production, Ecological insulation material, Landscape maintenance, Sustainable production chain

Sheep farming in Italy is becoming extremely expensive, both in food producing chain and in wool shearing market. On the one hand sheep's milk and meat are badly paid reducing gradually the profit margin, consistent to a steady trend began in the late nineties. On the other other, wool is no longer sold in the furnishing sector. In past decades the sheep-shearing took place twice in a year, in spring and autumn. Thus the wool quality was higher and it was possible for the sheep farmer to make a certain profit. Nowadays the wool is often characterized as a special waste and only the landfill or the burying can be expected. The wool is became an economic weakness in the production supply-chain due to a double cost: the final disposal and the shearing reduced – obviously – only one time a year. The supply chain, including the rear, the milking, the butchering and the
concentra il più alto numero di capi ovini a livello nazionale (circa il 50% dei 7 milioni di capi allevati in Italia). Tuttavia, problemi si rilevano anche nelle regioni alpine dove si contano circa 400.000 capi (ISTAT, 2005) e dove viene ancora praticato l'allevamento in alpeggio, con sensibili ricadute positive sul presidio di territori marginali e sulla conservazione del paesaggio alpino e prealpino, naturale e costruito. La progressiva rinuncia ad allevare capi ovini comporterà inevitabilmente l’abbandono delle abitazioni temporanee (malghe, casolari, casere, ecc.) e un generale impoverimento del territorio. Un miglioramento delle condizioni economiche e ambientali può essere ottenuto attraverso un più esteso impiego di prodotti di origine ovina in ambito edilizio. All’a lana si riconoscono, infatti, ottime proprietà di natura termo-fisica, cui bisogna associare il basso impatto energetico e ambientale, così come confermato da uno studio LCA (Life Cycle Assessment) condotto dal Centro Interuniversitario per la Valutazione della Qualità Ambientale del Costruito del Politecnico di Torino. (Fig. 1)

Le lane italiane possono essere raramente impiegate nell’industria tessile, mentre hanno caratteristiche ideali per la produzione di feltri e materassini agugliati. Questi ultimi costituiscono la forma più diffusa di isolanti termici sebbene, con l’eccezione di alcune realtà virtuose, è piuttosto frequente che in Italia la lana destinata a tali applicazioni sia importata da nazioni come l’Austria o la Nuova Zelanda. Il trasporto da paesi terzi incide per oltre il 10% del Contenuto di Energia Primaria (CEP) per kg di prodotto finito. (Fig. 2) Inoltre, non bisogna tralasciare il fatto che un recupero della lana dopo la tosatura riduce sensibilmente le emissioni di CO₂, rispetto a quelle che si produrrebbero dallo smaltimento in discarica o mediante incenerimento.

Alcune regioni italiane hanno affrontato la crisi del settore dando avvio a progetti e iniziative destinati a vari settori produttivi. Il Programma di Sviluppo Rurale della Regione Piemonte 2007-2013, ad esempio, individua tra gli orientamenti ritenuti essenziali al settore la diversificazione dell’economia rurale e «la ricerca di sbocchi per le produzioni di lana, per trasformare quello che è attualmente un puro costo in un utile o, quantomeno, in una non perdita economica per l’allevatore» (Programma Regione Piemonte).

Il recupero della lana di pecora inadatta all’industria tessile è stato
anche l’obiettivo di alcuni progetti di sviluppo territoriale e di coo-
perazione transnazionale all’interno dei programmi di I.C. Leader, 
che hanno coinvolto alcuni G.A.L. (Gruppi di Azione Locale) italia-
ni e spagnoli.
L’impegno della Regione Piemonte nel promuovere sistemi produt-
tivi innovativi e locali è confermato dal progetto «CARTONLANA», 
una ricerca coordinata dal Politecnico di Torino e nata nell’ambi-
to delle attività di sviluppo sperimentale e industriale promosse da 
POLIGHT, il polo regionale dedicato alle tecnologie dell’edilizia so-
stenibile al quale aderiscono imprese e centri di ricerca regionali e 
nazionali.
Obiettivo del progetto è la realizzazione di un pannello autopor-
tante con funzione di isolamento termico e acustico, ottenuto dal 
recupero della lana di ovini allevati in Piemonte. CARTONLANA, 
pur mantenendo le principali caratteristiche dei manufatti in fibra 
di lana (resistenza al fuoco, porosità, proprietà termoisolanti, igro-
scopicità), mediante un processo di trattamento termochimico in 
grado di modificare la composizione cheratinica della fibra (Fig. 3), 
assume caratteristiche meccaniche tali da conferirle rigidità, requi-
sito assente negli isolanti in lana attualmente in uso.
In particolare, il progetto di ricerca prevede la realizzazione di pro-
totipi con differenti combinazioni di densità e spessori da sottoporre 
alla prova a fine determinare, conformemente alla normativa tec-
nica vigente:
– le proprietà di trasmissione del vapore acqueo;
– le prestazioni termiche (conduttività termica e resistenza termica), 
con il metodo della piastra calda con anello di guardia e con il me-
todo del termo flussimetro;
– il comportamento meccanico mediante prove a compressione e a 
frizione;
– l’emissione di composti organici volatili (VOCs) con il metodo in 
cella di prova di emissione.
I primi risultati conseguiti sono promettenti, così come si evince dal 
confronto di alcuni parametri fisici ottenuti da prove su materassini 
di lana in rotoli e campioni sperimentali di CARTONLANA prodot-
ti presso i laboratori dell’ISMAC di Biella (tabella 1).
La tabella evidenzia alcune proprietà tecnologiche che consentono 
di classificare il pannello come ecocompatibile, con particolare ri-

ferimento ai requisiti di durata, espressa in numero di anni, e di versatilità di impiego, intesa come possibilità di abbinare il prodotto a tecniche costruttive a secco, garantendo una potenziale separabilità in fase di dismissione.

La cheratizzazione del pannello richiede un processo di trasformazione supplementare rispetto al sistema di produzione tradizionale dei materassini, con un conseguente maggior contenuto di energia primaria (CEP) in fase di produzione fuori opera. Tale incremento è tuttavia compensato dalle possibilità date dal pannello CARTONLANA, che permette di risolvere in modo più efficace i potenziali ponti termici in corrispondenza dei nodi strutturali, con un miglioramento del bilancio energetico complessivo nell’intero processo edilizio.

Un ulteriore elemento di interesse affrontato dal progetto riguarda la caratteristica della lana di fissare chimicamente i Composti Organici Volatili (COV).

Alcuni esperimenti condotti dimostrano la particolare capacità di assorbimento di formaldeide. Un campione di lana (25x25x2 cm) posizionato in camera di prova in ambiente controllato (temperatura: 23°C; umidità relativa: 45%) è in grado di ridurre in due ore

<table>
<thead>
<tr>
<th>Tabella 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principali caratteristiche fisico tecniche degli isolanti in Lana di Pecora attualmente utilizzati (materassini agugliati) e dei pannelli di CARTONLANA</td>
</tr>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>Main features of sheep’s wool insulation currently used and CARTONLANA panels</td>
</tr>
</tbody>
</table>

### Tabella 1

<p>| Isolanti termoacustici in Lana di Pecora - principali caratteristiche fisiche, tecnologiche ed energetiche |</p>
<table>
<thead>
<tr>
<th>Wool thermal insulations – Summary of physical, technological and energy parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Materassini agugliati in rotoli</strong></td>
</tr>
<tr>
<td>Wool insulation – rolls</td>
</tr>
<tr>
<td><strong>Cartonlana</strong></td>
</tr>
<tr>
<td>(estimate value)</td>
</tr>
<tr>
<td>Densità [kg/m³]</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>15-20-25</td>
</tr>
<tr>
<td>40-50</td>
</tr>
<tr>
<td>Calore Specifico [kJ/kg]</td>
</tr>
<tr>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>1,3-1,7</td>
</tr>
<tr>
<td>1,3-1,7</td>
</tr>
<tr>
<td>Coefficiente di resistenza alla diffusione del vapore acqueo [μ]</td>
</tr>
<tr>
<td>Water vapour resistance factor</td>
</tr>
<tr>
<td>1-5</td>
</tr>
<tr>
<td>5-6</td>
</tr>
<tr>
<td>Conduttività Termica [W/mK]</td>
</tr>
<tr>
<td>Design thermal conductivity</td>
</tr>
<tr>
<td>0,037-0,040</td>
</tr>
<tr>
<td>0,040-0,045 (4)</td>
</tr>
<tr>
<td>Classe di Reazione al Fuoco</td>
</tr>
<tr>
<td>Fire rating classification (Italian standard)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Modalità di posa in opera</td>
</tr>
<tr>
<td>Method of installation</td>
</tr>
<tr>
<td>accostamento combination (dry system)</td>
</tr>
<tr>
<td>sistema umido, accostamento, incastro serraggio humid and dry system, combination</td>
</tr>
<tr>
<td>Durata stimata [anni]</td>
</tr>
<tr>
<td>Durability [years]</td>
</tr>
<tr>
<td>50-65</td>
</tr>
<tr>
<td>50-75</td>
</tr>
<tr>
<td>Modalità di installazione</td>
</tr>
<tr>
<td>Method of installation</td>
</tr>
<tr>
<td>isolamento in intercapedine, isolamento di solaio su sottotetto non riscaldato cavity wall, roofs</td>
</tr>
<tr>
<td>isolamento interno, esterno e in intercapedine di chiusure verticali, isolamento di solai interni e coperture orizzontali e inclinate wall insulation (cavity wall or internal side), external wall insulation, roofs, floors</td>
</tr>
<tr>
<td>Contenuto di energia primaria per 1 kg di prodotto [MJ/kg]</td>
</tr>
<tr>
<td>Primary Energy Content [MJ/kg]</td>
</tr>
<tr>
<td>19,26</td>
</tr>
<tr>
<td>21,18</td>
</tr>
</tbody>
</table>
l’80% della concentrazione iniziale di formaldeide (300 ppm). Tale concentrazione, dopo 24 ore si attesta al di sotto del 10% di quella misurata all’inizio della prova. Ciò dimostra che l’integrazione della lana nei prodotti edilizi va a beneficio della qualità dell’aria negli ambienti confinati.

La fase di sperimentazione in opera prevede, infine, l’applicazione del pannello CARTONLANA a diverse configurazioni di involucro per valutarne le condizioni di posa, il comportamento in uso e per testarne la piena applicabilità nel settore delle chiusure esterne e delle parti verticali. In particolare, si prevede la realizzazione di almeno due soluzioni di pareti verticali: una con l’inserimento del pannello isolante nell’intercapedine, l’altra con l’utilizzo del pannello sul lato esterno. Nel caso della parete con isolamento a cappotto si dovranno, inoltre, effettuare verifiche specifiche rispetto alle soluzioni di finitura superficiale.

La campagna di monitoraggio dei pannelli durerà almeno un anno, per poter valutare le prestazioni degli elementi di involucro nelle diverse conditioni climatiche stagionali. Questa fase di sperimentazione permetterà, inoltre, di mettere a punto e di verificare i sistemi di montaggio in opera e il comportamento in uso sotto diversi profili.

La valorizzazione di una materia prima seconda, oggi considerata come un puro costo, è molto più di una buona pratica ambientale. Contribuisce alla messa a punto di un modello di sviluppo in grado di garantire la sussistenza di economie locali e di impresa: i pastori potranno trarre un guadagno dalla vendita di un prodotto che altrimenti sarebbe necessario smaltire in discarica; i produttori di isolanti potranno contenere gli oneri di trasporto dai paesi stranieri e proporre un prodotto più competitivo sul mercato. Infine, è opportuno valutare le externalità positive che riguardano la collettività e le ricadute sulla gestione del territorio, a dimostrazione che con le pecore è ancora possibile «guadagnare».

wool is the main objective of the research project. CARTONLANA keeps the main characteristics of a wool panel (fire resistance, porosity, conductivity and hygroscopicity) but with better performances in terms of mechanical properties, becoming stiffer than the usual panel. Such mechanical properties are the outcomes of a thermal and chemical process. The wool keratin structure changes and the material from soft becomes stiff and self-baring. (Fig. 3) In the research project monitoring activities are also included. CARTONLANA will be build up in two (or more) wall systems in order to investigate:

- The water vapour resistance factor;
- The design thermal conductivity and the thermal resistance;
- The mechanical properties through compression and flexure test;
- The emission of volatile organic compounds (VOC) with emission test cell method.

First experiments carried out on test specimens manufactured by ISMAC Institute are encouraging, as it shown on table 1. The table compares some physical parameters for wool insulation rolls and CARTONLANA self bearing panels. CARTONLANA can be assumed as an ecological building product, with particular reference to durability and adaptability. The former was measured in expected life time; the latter was referred to suitability of being integrated in several building systems, such as wet and dry assembled systems. The thermal and chemical process to manufacturing CARTONLANA, compared to wool insulation rolls, requires a further stage in the production system. Thus primary energy content is greater, nevertheless the self bearing panel is addressed to reduce the energy losses as well as thermal bridges. Walls system built up with wool rolls often are characterized by thermal losses due to discontinuity between the wall itself and the floor system, with CARTONLANA such discontinuity should be completely absent or significantly reduced, with an expectation of an improved energy performance in the whole building process. Researches carried out by pre-existent test emphasize an important supplementary aspect related to wool capability to catch chemical pollutants such us Volatile Organic Compounds (VOCs).

In particular the experiments carried out show the wool’s property to absorb formaldehyde in an indoor environment. A wool specimen (25x25x2 cm) was placed in test cell afterwards filled of
La valutazione dei requisiti di ecocompatibilità è stata condotta attraverso l’utilizzo di un software di simulazione delle prestazioni tecnologiche dei prodotti denominato COM.PRO. (versione beta), sviluppato dai ricercatori del Dipartimento DINSE.

Il contenuto di energia primaria della fase di produzione fuori opera è stato determinato utilizzando la banca dati contenuta nel Boustead Model 4.4.

Il valore riportati si riferiscono a risultati stimati sulla base degli studi di fattibilità che sono stati condotti sui campioni di materiale.

BIBLIOGRAFIA

Barber, A. e Pellow, G. (2006), Life cycle assessment: New Zealand merino industry; merino wool total energy use and carbon dioxide emission, Agribusiness Group, Auckland, NZ.


Giordano, R. (2010), I prodotti per l’edilizia sostenibile, Sistemi Editoriali Esselibri, Napoli, I.


Norma UNI EN 12667: 2002 – Prestazione termica dei materiali e dei prodotti per edilizia - Determinazione della resistenza termica con il metodo della piastra calda con anello di guardia e con il metodo del termo flussimetro.


formaldeide in concentration equal to 300 ppm. Temperature (23°C) and relative humidity (45%) were set up for a 24 hour cycle while test was carried out taking samples of air every hour. After two hours the wool absorbed 80% of the formaldehyde. The formaldehyde concentration after 24 hours standing at below 10% of value measured at the beginning of the test.

Finally a specific phase of the research project is aimed at testing CARTONLANA in different building systems. Several parts of building envelope will be tested in order to assess the CARTONLANA behavior and its full applicability in cavity walls as well as external insulated walls. The monitoring activities will be carried out for more than a year, thus it will be possible to study the performance of building systems in different weather and climate conditions.

The development of panel based on a raw secondary material – such as wool – today regarded as an economic cost where no gains are provided can be assumed like something more than one environmental best practice. It takes part at a development of a sustainable business model able to protect and preserve the local subsistence economy, both for farmers and enterprises. The formers could sell the sheared wool cut the cost of due to disposal of the wool itself. The latter could reduce the transportation costs from foreigner countries and proposing for the market a more competitive building product. In conclusion it is important to take into account the positive externalities concerning the community and the management of the territory, proving an important fact: «earning» with wool is still possible.

NOTES

1 ISMAC Biella (BI) is the Institute for Macromolecular Studies of the National Research Council (CNR).
2 A software simulation with COM.PRO., a beta version developed by the DINSE’s research team, was carried out in order to assess the durability and the adaptability of specimens provided by ISMAC.
3 A software simulation with Boustead 4.4 was carried out in order to assess the primary energy content (CEP) for specimens production stage.
4 Expected value based on first feasibility study carried out within the research project.