Lizards of Ethiopia (Reptilia Sauria): an annotated checklist, bibliography, gazetteer and identification key

M.J. LARGEN 1 and S. SPAWLS 2

1 Liverpool Museum, William Brown Street, Liverpool L3 8EN, England
2 9 Southerwood, Norwich NR6 6JN, England

Received 19 April 2005, accepted 26 July 2005

This review lists Agama smithii Boulenger 1896 as a synonym of Agama agama (Linnaeus 1758), Agama trachypleura Peters 1982 as a synonym of Acanthocercus phillipsii (Boulenger 1895) and describes for the first time Acanthocercus guentherpetersii n. sp. Without more convincing evidence, Chamaeleon ruspolii Boettger 1893 cannot be accepted as specifically distinct from Chamaeleo dilepis Leach 1819, nor Chamaeleo calcaricarens Böhme 1985 from C. africanus Laurenti 1768.

Consequently, 101 species of lizard are currently recognised in Ethiopia, of which some 40% appear to be denizens of the Somali-arid zone. This significant proportion is attributable in part to the importance of the Horn of Africa as a centre for reptilian diversification and endemcity, in part to the fact that this lowland fauna was rather extensively sampled during the 1930s, but also to the conspicuous neglect of lizards in other regions of the country. Mountain and forested habitats are widespread in Ethiopia, so it seems extraordinary to record only five saurian species which are believed to be endemic in such environments. The inference that there are many more still to be discovered has important implications for conservation, because montane forest is known to be among the most threatened of Ethiopian biomes and there is clearly an urgent need for its herpetofauna to be more thoroughly researched and documented.

KEY WORDS: Reptilia, Sauria, lizards, Ethiopia, taxonomy, new species, identification, distribution.
<table>
<thead>
<tr>
<th>Genus</th>
<th>Species Information</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genus Agama</td>
<td>Agama agama (Linnaeus 1758)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Agama doriae Boulenger 1885</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Agama persimilis Parker 1942</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Agama robecchii Boulenger 1892</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Agama rueppelli Vaillant 1882</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Agama spinosa Gray 1831</td>
<td>33</td>
</tr>
<tr>
<td>Genus Uromastyx</td>
<td>Uromastyx ocellata Lichtenstein 1823</td>
<td>34</td>
</tr>
<tr>
<td>Genus Xenagama</td>
<td>Xenagama batillifera (Vaillant 1882)</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Xenagama taylori (Parker 1935)</td>
<td>34</td>
</tr>
<tr>
<td>Family Chamaeleonidae</td>
<td>Chamaeleo affinis Rüppell 1845</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo africanus Laurenti 1768</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo balebicornutus Tilbury 1998</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo bitaeniatus Fischer 1884</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo dilepis Leach 1819</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo gracilis Hallowell 1842</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo harennae Largen 1995</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Chamaeleo laevigatus Gray 1863</td>
<td>41</td>
</tr>
<tr>
<td>Genus Rieppeleon</td>
<td>Rieppeleon kerstenii (W. Peters 1868)</td>
<td>42</td>
</tr>
<tr>
<td>Family Cordylidae</td>
<td>Cordylus rivae Boulenger 1896</td>
<td>42</td>
</tr>
<tr>
<td>Genus Gerrhosaurus</td>
<td>Gerrhosaurus flavigularis Wiegmann 1828</td>
<td>43</td>
</tr>
<tr>
<td>Family Gekkonidae</td>
<td>Gerrhosaurus major A. Duméril 1851</td>
<td>43</td>
</tr>
<tr>
<td>Genus Cnemaspis</td>
<td>Cnemaspis dickersonae (Schmidt 1919)</td>
<td>43</td>
</tr>
<tr>
<td>Genus Hemidactylus</td>
<td>Hemidactylus platycephalus W. Peters 1854</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus albopunctatus Loveridge 1947</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus arnoldi Lanza 1978</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus barodanus Boulenger 1901</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus bavazzanoi Lanza 1978</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus brooki Gray 1845</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus curlei Parker 1942</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus isolepis Boullenger 1895</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus jubensis Boullenger 1895</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus laticaudatus Andersson 1910</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus macropholis Boulenger 1896</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Hemidactylus ophiolepis Boulenger 1903</td>
<td>48</td>
</tr>
<tr>
<td>Family Holodactylus</td>
<td>Holodactylus africanaus Boettger 1893</td>
<td>52</td>
</tr>
</tbody>
</table>
Genus *Homopholis* Boulenger 1885.

Homopholis fasciata (Boulenger 1890).

Genus *Lygodactylus* Gray 1864.

Lygodactylus grandisonae Pasteur 1962.

Lygodactylus gutturalis (Bocage 1873).

Lygodactylus keniensis Parker 1936.

Lygodactylus somalicus Loveridge 1935.

Genus *Pristurus* Rüppell 1835.

Pristurus crucifer (Valenciennes 1861).

Pristurus flavipunctatus Rüppell 1835.

Pristurus rupestris Blanford 1874.

Pristurus somalicus Parker 1932.

Genus *Ptyodactylus* Goldfuss 1820.

Ptyodactylus ragazzii Anderson 1898.

Genus *Stenodactylus* Fitzinger 1826.

Stenodactylus sthenodactylus Lichtenstein 1823.

Genus *Tarentola* Gray 1825.

Tarentola annularis (I. Geoffroy 1827).

Genus *Tropiocolotes* Peters 1880.

Tropiocolotes somalicus Parker 1942.

Family Lacertidae.

Genus *Heliobolus* Fitzinger 1843.

Heliobolus neumanni (Tornier 1905).

Heliobolus spekii (Günther 1872).

Genus *Latastia* Bedriaga 1884.

Latastia boscai Bedriaga 1884.

Latastia caerieleopunctata Parker 1935.

Latastia doriai Bedriaga 1884.

Latastia longicaudata (Reuss 1834).

Genus *Mesalina* Gray 1838.

Mesalina martini (Boulenger 1897).

Genus *Philochortus* Matschie 1893.

Philochortus hardeggeri (Steindachner 1891).

Philochortus intermedius Boulenger 1917.

Philochortus phillipsii (Boulenger 1898).

Philochortus rudolfensis Parker 1932.

Philochortus spinalis (W. Peters 1874).

Genus *Pseuderemias* Boettger 1883.

Pseuderemias brenneri (W. Peters 1869).

Pseuderemias mucronata (Blanford 1870).

Pseuderemias smithi (Boulenger 1895).

Pseuderemias striata (W. Peters 1874).

Family Scincidae.

Genus *Chalcides* Laurenti 1768.

Chalcides ocellatus (Forsskål 1775).

Chalcides ragazzii Boulenger 1890.

Genus *Lygosoma* Hardwicke & Gray 1827.

Lygosoma afrum (W. Peters 1854).

*Lygosoma paedocarina*um (Lanza & Carfi 1968).

Lygosoma somalicum (Parker 1942).

Lygosoma sundevallii (A. Smith 1849).

Lygosoma vinciguerrae Parker 1932.

Genus *Mabuya* Fitzinger 1826.

Mabuya brevicollis (Wiegmann 1837).

Mabuya hildebrandtii (W. Peters 1874).

Mabuya isselii (W. Peters 1871).

Mabuya maculilabris (Gray 1845).

Mabuya megalura (W. Peters 1878).

Mabuya planifrons (W. Peters 1878).
INTRODUCTION

Credit for initiating the present work must go to Ronald Gutberlet (University of Texas at Tyler), who first proposed a comprehensive review of Ethiopian lizards, comparable with previously published catalogues of snakes (Largen & Rasmussen 1993) and amphibians (Largen 2001). Regrettably, other commitments later obliged Gutberlet to withdraw from this project, before being able to implement his plan to study relevant museum collections in the United States and mainland Europe. The resulting checklist is clearly a less substantial product than was originally conceived, but we hope it may still be a useful contribution to a seriously neglected subject.

Fortunately, the Natural History Museum in London has good series of Ethiopian specimens, representing almost every saurian species ever recorded from this country. The present checklist is based upon these collections, which have also been used to authenticate and in part compile an identification key that was originally drafted mostly from literature sources. Though the bibliography of previous publications on Ethiopian lizards is believed to be comprehensive, most early authors were remarkably negligent about recording such details as accession numbers, or even in some cases the institutions in which their material was housed. Thanks to generous assistance from numerous colleagues we have been able to remedy this deficiency to a considerable extent, precisely locating many specimens of taxonomic or historic interest, as well as documenting those that appear to have perished. Such data will eventually facilitate a much-needed reassessment of material which, for the moment, we have generally been able to list only under the names assigned by former workers. Many of these determinations are expected to be accurate, but some are undoubtedly wrong and until past errors have been corrected no reliable picture of geographical distributions can be developed and any attempt to construct range maps would be premature.

Largen (2001) provided a brief outline of the topography and ecology of Ethiopia, together with a summary of the most significant events in the herpetological exploration of this country. To his account it is necessary to add only an acknowledgement of the magnificent collection of lizards and snakes obtained by R.H.R. Taylor, during 1929-1930 and 1932-1934, while serving on two Anglo-Italian Bound-

Mabuya quinquetaeniata (Lichtenstein 1823) 72
Mabuya striata (W. Peters 1844) 73
Mabuya varia (W. Peters 1867) 74
Mabuya wingatii (Werner 1907) 74
Genus Panaspis Cope 1868 75
Panaspis tancredii (Boulenger 1909) 75
Panaspis wahlbergii (A. Smith 1849) 75
Family Varanidae . 75
Genus Varanus Merrem 1820 75
Varanus albigularis (Daudin 1802) 75
Varanus niloticus (Linnaeus 1766) 76
Key to the lizards recorded from Ethiopia 76
Gazetteer of collection localities 86
Discussion . 93
Acknowledgements . 94
References . 95
ary Commissions. Though reported by Parker (1930, 1932, 1935, 1942, 1949) as specimens from “Somaliland”, the exact nature of Taylor’s work meant that most of his material was collected from localities situated very precisely along the border between Ethiopia and Somalia (and a small proportion of it from well within Ethiopian territory). Indisputably the finest single collection of reptiles ever made in NE Africa, a dozen species of lizard are still known from Ethiopia only on the evidence of examples donated by Taylor to the Natural History Museum in London.

The following abbreviations are used for museum collections: ANSP = Academy of Natural Sciences, Philadelphia; BM = Natural History Museum, London; CAS = California Academy of Sciences, San Francisco; FMNH = Field Museum of Natural History, Chicago; LIVM = Liverpool Museum; MCZ = Museum of Comparative Zoology, Harvard University, Cambridge; MNHN = Muséum National d’Histoire Naturelle, Paris; MSNG = Museo Civico di Storia Naturale, Genoa; MSNM = Museo Civico di Storia Naturale, Milan; MZUF = Museo Zoologico dell’Università, Florence; MZUT = Museo Zoologico dell’Università (now incorporated into the Museo Regionale di Scienze Naturali = MRSN), Turin; NHMAA = Natural History Museum, Addis Ababa; NMB = Naturhistorisches Museum, Basel; NMW = Naturhistorisches Museum, Vienna; NMZB = Natural History Museum of Zimbabwe, Bulawayo; NSMW = Naturwissenschaftliche Sammlung, Museum Wiesbaden; PEM = Port Elizabeth Museum; SMF = Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main; USNM = United States National Museum of Natural History, Washington, DC; ZFMK = Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn; ZMB = Museum für Naturkunde, Berlin; ZMH = Zoologisches Museum, Hamburg; ZSM = Zoologisches Sammlung des Bayerischen Staates, Munich.

SYSTEMATICS

Family Agamidae

Genus *Acanthocercus* Fitzinger 1843

Acanthocercus annectans (Blanford 1870)

Agama annectens; _Boulenger_ 1895a: 533 [part: BM 95.12.31.6], 1896b: 215; _Battersby_ 1954: 244.

Acanthocerus annectans; _Spawls_ et al. 2002: 196 [Axum].

Acanthocercus atricollis (A. Smith 1849)

Acanthocercus atricollis A. Smith 1849: 14, Natal, South Africa.

Taxonomic notes. The question of whether or not this species is different from *Stellio cyanogaster* Rüppell 1835 is one that has perplexed herpetologists for many years. Boulenger (1896a) thought they were perhaps inseparable, Parker (1942) formally synonymised the two taxa and Loveridge (1957) concurred. Most recently, Spawls et al. (2002) have expressed the view that they are “doubtfully distinct”. Nevertheless, the characters that Klauswitz (1954) used to discriminate between *A. cyanogaster* and *A. atricollis* certainly cluster around two recognisable phenotypes, the geographical distribution of which does not seem to allow consideration of a subspecific relationship. Admittedly, there is sufficient variation in these diagnostic features to introduce a degree of subjectivity into the identification of some preserved specimens, but the evidence still appears adequate to justify recognition of these taxa as separate (if somewhat poorly differentiated) species.

Surprisingly, Klauswitz (1954, 1957) failed to record the fact that there is also variation in the expression of carinate gular scales. Peters (1982) did incorporate this feature into his diagnostic key but seems, perhaps inadvertently, to have associated the possession of sharply keeled gulars with the wrong taxon. At least in Ethiopia, we believe it to be *A. cyanogaster*, not *A. atricollis*, in which carinate scales are found on the throat of adult animals. It should also be noted that, although we recognise the validity of *A. zonurus*, males of this species often exhibit more rows of preanal pores (range: 2-4) than Peters realised and the diagnostic usefulness of this character is correspondingly diminished.

Despite the best efforts of Klauswitz (1954, 1957), the taxonomy of *Acanthocercus* in NE Africa is still much in need of comprehensive review and it seems likely that molecular data will prove to be particularly valuable. Meanwhile, it is perhaps relevant to observe that *A. cyanogaster* is currently known with certainty only from Eritrea and Ethiopia. This may help to explain the confusion experienced by researchers working further south, who have possibly sought but failed to distinguish *cyanogaster* and *atricollis* in population samples from a geographical area in which only the latter species is actually present.

Field notes. According to BRANCH (1988), Acanthocercus atricollis in southern Africa is almost invariably associated with trees. This seems to be true also of some populations further north, since SPAWLS et al. (2002) agree that the species typically lives on the trunks of big trees, although it does sometimes occur on rocks and termite hills. In contrast, Ethiopian specimens are frequently encountered in more open habitats, provided that these afford the opportunity to obtain shelter in holes or beneath rocks. It is also interesting to note the report of CURRY-LINDAHL (1957), on lizards that appear to have been A. atricollis (though he identified them as Agama cyanogaster) in the Virunga region of eastern Congo Kinshasa. These animals were found living amongst boulders on a bare lava plain, where they tolerated surface temperatures up to 44.5 °C. It remains to be determined whether such conflicting observations apply to a single rather versatile species or are perhaps indicative of some taxonomic differentiation.

Distribution. Ethiopia and northwestern Somalia, southwards to Angola, Namibia and northern regions of South Africa.

Acanthocercus cyanogaster (Rüppell 1835)

Stellio cyanogaster RUPPELL 1835: 10, Massaua, Eritrea.

Additional material. Egriariba [VINCIGUERRA 1931: 99; MSNG 31296]. Vicinity of Gondar [CALABRESI 1925: 102; MSNM-Re1727]. “Hawash” (= Awash) River [BOULENGER 1912: 330; MSNG 28954]. Harar [LOVERIDGE 1936a: 57; FMNH 3905-3906]. (NW corner of) Lake Shalla [LOVERIDGE 1936a: 57; FMNH 12522 and MCZ-R34967, formerly FMNH 12523]. Lower Tug Faf [BOETTGER 1893a: 114: specimen not found in SMF, so presumed lost]. “Webithal” (= Webi Shebeli) [BOETTGER 1893a: 114: specimen not found in SMF, so presumed lost]. Eghi Mt [BOETTGER 1893a: 114; specimen not found in SMF, so presumed lost]. Webi Mana [BOULEN-

Distribution. Known with certainty only from Eritrea and Ethiopia.

Acanthocercus phillipsii (Boulenger 1895)

Agama phillipsii Boulen. 1895c: 167, inland of Berbera, Somalia.
Agama phillipsii; Parker 1942: 51.

Taxonomic notes. Peters (1982) erected the name *Agama trachypleura* on the basis of just two specimens, one of which (FMNH 26318) was formerly part of the series BM 1937.12.5.5-13, identified by Parker (1942) as *Agama phillipsii*. A careful reading of Peters’ account led us to conclude that his diagnosis of *trachypleura* corresponded remarkably well with our notion of *phillipsii*, but that his description of “*phillipsii*” seemed to represent a different taxon. Although Peters documented no comparative material, it seemed reasonable to suppose that his concept of *A. phillipsii* might have been derived, wholly or in part, from material held by his own institution, the Museum für Naturkunde in Berlin. In order to clarify this issue, we therefore brought together all relevant specimens available from Berlin and elsewhere.

Direct comparison of the holotype (ZMB 37109) and paratype (FMNH 26318) of *A. trachypleura* with the two syntypes of *A. phillipsii* (BM 95.6.14.11/1946.8.26.12, 95.7.17.12/1946.8.26.13) leaves no doubt that all are conspecific. Four further specimens in Berlin (ZMB 18428, 36922, 54567-54568), catalogued as *A. phillipsii*, are found to be morphologically identical with material to which Peters applied this name, although they in fact represent a clearly different and evidently still unnamed taxon. In summary, Peters (1982) was entirely correct to recognise the existence of two separate species in the material before him, but was misinformed about the identity of *A. phillipsii*, apparently because of a failure to examine Boulenger’s types. Consequently, he mistakenly assigned to the wrong taxon the new name that was clearly required, so creating *A. trachypleura* as an unquestionable synonym of *A. phillipsii*.

Material examined. 10°10’N 43°00’E [BM 1937.12.5.17]. 10°05’N 43°00’E [BM 1937.12.5.2-4]. 10°00’N 43°00’E [BM 1937.12.5.1]. 09°55’N 43°10’E [BM 1937.12.5.5-12 and FMNH 26318, formerly BM 1937.12.5.13 (paratype of *trachypleura*)]. 09°50’N 43°10’E [BM 1937.12.5.14-16]. 09°50’N 43°15’E [BM 1937.12.5.19-21].

Distribution. Northwestern Somalia and immediately adjacent regions of Ethiopia, northwards to Eritrea.

Acanthocercus guentherpetersi n. sp.

Agama cyanogaster phillipsi (not Boulen. 1895); Klauswitz 1954: 145 (part: ZMB 36922).
Agama phillipsii (not Boulen. 1895); Peters 1982: 266-268.
Etymology. This species is named for Dr Günther Peters, former Curator of Herpetology at the Museum für Naturkunde in Berlin, who first recognised and accurately documented its distinctive features. The value of his contribution should not be under-estimated, merely because associated with an unfortunate nomenclatural error.

Holotype. An adult male (BM 1969.1254) from ca 40 km E of Harar on the road to Jigjiga, Ethiopia (09°12'N 42°22'E, altitude 1500 m), collected 21 September 1968 by the Great Abbai Expedition.

Paratypes. ♀ (BM 1969.1253), ca 20 km E of Harar on the road to Jigjiga, Ethiopia (09°12'N 42°15'E, 1400 m), 21 September 1968, Great Abbai Expedition; ♀, 3 juveniles (BM 1970.1449-1452), “Dakhato” (= Dacata) River, between Harar and Jigjiga, Ethiopia (09°12'N 42°25'E, ca 1400 m), 30 September 1934, R.H.R. Taylor; ♂ (ZMB 36922), “Abessinien” (= Ethiopia), E. Wache ‡; ♂, ♀ (ZFMK 19450-19451), Af Abed, Eritrea (16°14'N 38°46'E), 7 February 1938, von Saalfeld; ♂ (BM 1915.3.9.1), Habesch (region), Eritrea (ca 15°40'N 39°00'E), G. Schroeder; 3 ♂♂ (ZMB 18428, 54567-54568), Eritrea, G. Schrader 4.

Diagnosis. Similar to *A. phillipsii* in habitus and probably coloration, but significantly larger, the snout-vent length of ♂♂ 77-102 (mean 88.8) mm, n = 7 and of ♀♀ 72-81 (77.7) mm, n = 3 [in *A. phillipsii*: ♂♂ 62-85 (71.5) mm, n = 9 and ♀♀ 55-70 (64.3) mm, n = 12]; enlarged, keeled and mucronate scales on the flanks generally few in number, widely dispersed or in weak and isolated transverse rows [in *A. phillipsii* such scales are closely compacted into a series of distinct transverse rows occupying a restricted area at mid-flank]; posterodorsal face of the thigh with a few large, keeled and mucronate scales irregularly arranged and intermingled with numerous smaller ones [in *A. phillipsii* this region of the femur has only large, regularly arranged scutes that are clearly separated from the small scales of the underside]; caudal scale rows (at a distance behind the vent equivalent to the maximum breadth of the tail) 20-29 (mean 23.8), n = 13 [in *A. phillipsii*: caudal scale rows only 16-21 (18.1), n = 28]. Further information may be obtained from Peters (1982).

Field notes. Specimens collected between Harar and Jigjiga were all obtained amongst rocks and boulders in areas of dry *Acacia* scrub and at one such site, 20 km E of Harar, the species was found living in close association with *A. annectans*.

Distribution. At present recorded only from the neighbourhood of Harar in Ethiopia and from the eastern lowlands of Eritrea, this species may have a range similar to that of *A. phillipsii*; in which case its presence in northwestern Somalia is to be expected. Continuity between Ethiopian and Eritrean populations via the eastern foothills of the central plateau seems rather less likely, because this species (like *A. phillipsii*) is unknown in the comparatively well explored surroundings of the Awash National Park.

3 Ernst Wache is known to have collected in the Dire Dawa area of Ethiopia during 1909-1910 (R. Günther and A. Haas in litt.), so it seems rather likely that this may be the provenance of ZMB 36922.

4 We strongly suspect that “Schrader” and “Schroeder” are the same person and that the former is the correct spelling of his name.
Acanthocercus zonurus (Boulenger 1895)

Acanthocercus zonurus **Boulenger** 1895: 533, Wardergubber (ca 07°20'N 40°30'E), Ethiopia [holotype: BM 95.6.11.3/1946.8.28.10].

Additional material. Lake “Haramaja” (= Alemaya) [Tornier 1905: 372; formerly ZMB, but now presumed lost]. Harar [Tornier 1905: 372; ZMB 18195, 19742, 27385, 27423].

Distribution. Known only from Ethiopia, where recorded on both sides of the Rift Valley at altitudes of approximately 2000-2500 m.

Genus Agama Daudin 1802

Agama agama (Linnaeus 1758)

Agama agama **Linnaeus** 1758: 207, “America” [erroneous].

Agama lionotus **Boulenger** 1896b: 214, SE of Lake Rudolf (= Lake Turkana), Kenya.

Agama agama lionotus; **Battersby** 1955: 149.

Taxonomic notes. **Boulenger** (1896b) failed to indicate what he considered to be the diagnostic features of *Agama smithii*, but suggested that his new taxon might be intermediate between *A. spinosa* and *A. rueppelli*. This seems strange, in view of the fact that the unique type specimen shows none of the characters now considered to define the latter species. **Parker** (1932a) referred the name *smithii* to the synonymy of *A. spinosa*, but subsequently (**Parker** 1942) expressed doubt about whether this action was justified. The holotype, a female of snout-vent length 110 mm, has the occipital scale distinctly enlarged, a well defined nuchal crest, the tympanum fully exposed, five discrete clusters of elongate spines surrounding the tympanum and a conspicuously pyriform nasal shield. As **Lanza** (1978a: 283-285) has correctly observed, *A. spinosa* invariably possesses six periauricular clusters of spines and a rounded nasal shield. On the basis of both morphological and geographical evidence, the name *smithii* should be relegated to the synonymy of *Agama agama*.

Additional material. Akobo (River), in Jambo region [Tornier 1905: 371; ZMB 27386]. Gondaraba [Scortecci 1943: 295; MSNM-Re1764]. Gongabaino [Scortecci 1943: 295; MSNM-
Lizards of Ethiopia

Field notes. Though known in East Africa as the “Red-headed Agama”, most mature males in southwestern Ethiopia (within the Mago National Park, Lake Stephanie and Lake Turkana area) were observed to have yellow or orange-yellow heads, just as they do in northern Kenya according to SPAWLS et al. (2002).

Distribution. Senegal to Eritrea and Ethiopia, southwards to Tanzania in the east and Angola in the west. In Ethiopia, apparently confined to western and southern regions of the country.

Agama doriae Boulenger 1885

Field notes. Animals in the Mugher River gorge at an altitude of 1660 m were found to be active by day on exposed rock surfaces. Displaying males had vivid

5 Agama doriae is known with certainty only from localities west of the Rift Valley (MOODY & BOHME 1984: 115, fig. 3) and records from further east seem very dubious.

6 RUPPELL (1835) was uncertain about the identity of this material, but wrote “der Kehlsack ist lebhaft orangegelb, und hinter denselben ein blauschwarzes Halsband, welches den Kehlsack von der Brust absondert”, which is a very fair description of the distinctive gular coloration seen in male A. doriae.
markings: the top of the head rust-red, the sides of the head and limbs blue, the throat mottled blue with orange patches anteriorly and the gular flap deep blue or blue-black (Fig. 1). Basking females were maroon, yellow and grey dorsally (Fig. 2).

Distribution. Ghana to Eritrea and Ethiopia, where known with certainty only from west of the Rift Valley.

Agama persimilis Parker 1942

Material examined. 08°37’N 45°09’E [BM 1937.12.5.65/1946.8.27.52 (type)]. 08°17’N 46°09’E [BM 1937.12.5.67/1946.8.27.54 (type)]. Bohodle [BM 1937.12.5.68-73/1946.8.27.55-60, 1937.12.5.75-77/1946.8.27.62-64 (types)]. 08°00’N 45°50’E [BM 1937.12.5.64/1946.8.27.51, 1937.12.5.66/1946.8.27.53 (types)]. 2 km NE of Mandera [CAS 130307].

Distribution. Somalia, eastern Ethiopia and eastern Kenya.

Agama robecchii Boulenger 1892

Agama robecchii Boulenger 1892: 6, between Obbia and Berbera, Somalia.

Material examined. Aware [NHMAA 2000.01].

*Field notes.** This species is reported to be diurnal and has been found living in holes on open sandy plains (S. Taye pers. comm.). When agitated, the specimen from Aware curled its tail defensively over its back (Fig. 3). The conspicuously elevated eyes, set in a bony turret, and distinctively square head are good field characters. In fact, the shape of the head (which must surely reflect some underlying peculiarities in skull structure) and remarkable dorsal scalation together define a species very different in superficial appearance from all other Ethiopian *Agama*. We wonder if it is correctly assigned to the same genus.

Distribution. Known only from Somalia and the single Ethiopian record cited above.

Agama rueppelli Vaillant 1882

Agama rueppelli Vaillant 1882: 6, “Pays Çomalis” (i.e. Somalia).

Agama vaillanti Boulenger 1895b: 12, Ogaden (region), Ethiopia [lectotype: MSNG 28850].

Boulenger 1895a: 532 [part: BM 95.12.31.2-3].

Agama rueppelli rueppelli; Parker 1942: 52.
Material examined. 10°45’N 42°45’E [BM 1973.12.5.80-81]. 10°35’N 42°40’E [BM 1937.12.5.78]. 10°20’N 42°45’E [BM 1937.12.5.79]. 09°55’N 43°10’E [BM 1937.12.5.82-87]. Sas sabana [BM 95.12.31.2]. (Webi) Shebeli (Donaldson Smith, 30.XII.1894) [BM 95.12.31.3].

Distribution. Somalia, eastern and southern Ethiopia, extreme southeastern Sudan and Kenya.

Agama spinosa Gray 1831

Agama spinosa Gray 1831: 57, “Africa” [restricted to Suakin, Sudan according to Marx (1968)].

Agama agama spinosa; Parker 1942: 49.

Distribution. Egypt to Eritrea, Djibouti, northeastern Ethiopia and northern Somalia.

7 Scortecchi (1943) recorded 18 specimens of *Agama agama* from southwestern Ethiopia, including six from the Caschei River; but clearly believed that another lizard from this locality represented a different taxon, listing it only as *Agama* sp. He noted that it is a female of snout-vent length 88 mm, having 60 midbody scale rows. Available evidence seems to suggest that this might be an example of *A. rueppelli*.

8 *Agama doriae* is known with certainty only from localities west of the Rift Valley (Moody & Bohme 1984: 115, fig. 3) and reports from further east seem very dubious. The specimen from “Ogaden” reported by Boulenger (1896c) as *A. doriae* (MSNG 28886) is listed in the catalogue of that museum as *A. spinosa*; a determination that might require confirmation but which certainly appears more plausible.
Genus *Uromastyx* Merrem 1826

Uromastyx ocellata Lichtenstein 1823

Uromastyx ocellatus Lichtenstein 1823: 107, "Nubia" (= Sudan).

Additional material. “So-Omadu” (= Somadu) [Tornier 1905: 373; ZMB 27398].

Distribution. Red Sea coasts of the Arabian Peninsula, Egypt and Sudan, south through Eritrea and Djibouti to northwestern Somalia and immediately adjacent Ethiopia.

Genus *Xenagama* Boulenger 1895

Xenagama batillifera (Vaillant 1882)

Uromastix batilliferus Vaillant 1882: 10, “Pays Çomalis" (i.e. Somalia).

Agama (Xenagama) batillifera; Parker 1942: 54.

Material examined. 09°50’N 43°10’E [BM 1937.12.5.90-93]. 09°50’N 43°15’E [BM 1937.12.5.95-115]. Milmil [BM 1937.12.5.116].

Additional material. 09°55’N 43°10’E [Parker 1942: 54; MCZ-R49121, formerly BM 1937.12.5.94]. Sassabana [Boulenger 1895a: 533; ANSP 4840].

Field notes. R.H.R. Taylor noted that “this species is chiefly nocturnal in its habits, being found by day in burrows which it constructs in soft earth” (Parker 1942: 54). Our informant agrees that it lives in burrows, but observed the animals to be diurnal at Gildessa, which has an altitude of 1100 m (S. Taye pers. comm.). The distinctive tail shape is a useful feature for identification in the field (Fig. 4).

Distribution. Northern Somalia and adjacent parts of eastern Ethiopia.

Xenagama taylori (Parker 1935)

Field notes. This species is diurnal and has been found living in flat semi-desert country, occupying burrows into which it retreats head first (S. Taye pers. comm.). The extraordinary, discoid and conspicuously spinose tail aids rapid identification in the field and presumably serves as a defence against any predator that may attempt to follow this lizard into its burrow (Fig. 5).

Distribution. *X. taylori* is known to have been collected only from the three localities listed above, but it has also been observed at Aware, about 70 km east of Dagah Bur; by S. Taye (pers. comm.).

Family Chamaeleonidae

Genus *Chamaeleo* Laurenti 1768

Chamaeleo affinis Rüppell 1845

Field notes. Spawls (2000) has recorded the existence of this species, based on specimens confidently identified but not collected, at four additional localities: Bedelle; Bonga; Goba; and Dodola. This small chameleon (Fig. 6) is easily recognised in the field by its long tail (about 50% of total length) and lack of a gular crest; a combination of characters unique amongst Ethiopian members of the genus. It is common in the intensely farmed Derba region (about 40 km north of Addis Ababa), but may be less tolerant of urbanisation since now rarely found even in the wooded suburbs of the capital city, though still present on the nearby Entotto hills. At Goba, with an altitude of 2800 m, the species is so abundant that 15 individuals were found occupying a single hedge in the grounds of a hotel.

Animals from both Goba and Addis Ababa were seen to become active at dawn, before the temperature had risen above 7 °C. The species is viviparous. Matting was observed in captive specimens, maintained in the open air under semi-
natural conditions, during May, June and October, with females giving birth in June, August and September. The largest brood was of 20 young and the neonates measured about 40 mm in total length.

Distribution. An Ethiopian endemic, widespread on the central plateau at altitudes of about 1900-3100 m, inhabiting both forest and isolated thickets in otherwise open grassland.

Chamaeleo africanus Laurenti 1768

Chamaeleon basiliscus COPE 1868: 316, Korusko, Nubia, Egypt. PARKER 1942: 79.
Chamaeleo (africanus) calcaricarens BÖHME 1985: 475, Gewani (10°10’N 40°38’E), Ethiopia [holotype: BM 1961.1774].

Taxonomic notes. BÖHME (1985) recognised *C. calcaricarens* as taxonomically distinct from *C. africanus* because his specimens were found to “lack the most important diagnostic character of the [latter] species, i.e. a tarsal spur in the male” and to possess not eight but ten cornified rotulae at the apex of the hemipenis. BÖHME was clearly uncertain about “whether the two allopatric forms should be regarded as subspecies or full species”, but finally concluded that since “there is generally no intraspecific variation of hemipenial characters” the new taxon should be regarded “as (allo)specifically distinct within a superspecies *C. africanus*”. Although this judgement might eventually prove to be correct, BÖHME identified no character which would allow females of the two forms to be separated and it now appears that even the males cannot invariably be distinguished by external features. At least two paratypic males of *C. calcaricarens* (BM 69.11.4.6 from Eritrea and BM 1937.12.5.781 from the Ethiopia-Somali border) possess small but perfectly distinct tarsal spurs (quite comparable with those of some immature *C. africanus* from Sudan and Nigeria). Where the identification of species is concerned, there is clearly a significant difference between a character which may be subjectively larger or smaller, as opposed to one that has the absolute value of either presence or absence.

SPAWLS (2000) attempted to improve this unsatisfactory situation and published a photograph of a dramatically pigmented specimen, found at Lefe Isa in Ethiopia, which he identified as *C. calcaricarens* (Fig. 7). Unfortunately, none of the subsequently examined type specimens of this name exhibit markings that closely resemble the vivid pattern of discrete blotches seen in the figured animal. The nearest approach is found in the holotype, that does indeed have prominent dark stripes on the side of the head, but its body is much more obscurely coloured by numerous spots and blotches, many of which tend to coalesce. Furthermore, virtually all the type specimens also have two or three pale stripes on the flanks; a feature which SPAWLS was wrongly inclined to regard as more characteristic of *C. africanus*. The same author recognised some difference between these taxa in the degree of development of the gular crest, which he described as “weak to almost absent” in *calcaricarens*, but “moderate” in *africanus*. Most type material of *calcaricarens* does conform to SPAWLS’ description, but one exception is BM 1937.12.5.781, which has
a gular crest comparable with that seen in *C. africanus* from Sudan and Nigeria; another is a paratype from Gondar (BM 1961.1008), in which this structure is even more strongly developed. Since the latter specimen is also a female, one wonders what can have led BöHME to think that it should be included amongst the types of *C. calcaricarens*. We are much more inclined to call this individual *C. africanus*.

Since it now seems that the only reliable character for distinguishing *calcaricarens* from *africanus* is the number of rotulae on the hemipenis and this is always going to be a difficult feature to determine, it could hardly be claimed that the former is a satisfactorily defined taxon or that its specific status has yet been convincingly demonstrated. Indeed, acceptance of the taxonomic arrangement proposed by BöHME (1985) would certainly leave a significant number of Ethiopian specimens, including all females, undetermined and perhaps indeterminable. In order to establish a more workable taxonomy, the only available solution is to refer all such material to *Chamaeleo africanus*; an action which allows for *calcaricarens* to be one day redefined as a plausible subspecies having a clearly circumscribed geographical range. Alternatively, if one chooses to interpret the name *C. africanus* in the broader sense, as denoting a species-complex, then this would accommodate the possibility that *calcaricarens* might eventually be proved to justify specific ranking.

Material examined. Gondar [BM 1961.1008 (type of *calcaricarens*)]. 10°35’N 42°40’E [BM 1937.12.5.781 (type of *calcaricarens*)]. Gewani [BM 1961.1774 (type of *calcaricarens*)]. 10°05’N 43°00’E [BM 1937.12.5.783 (type of *calcaricarens*)]. 10°00’N 43°00’E [BM 1937.12.5.782 (type of *calcaricarens*)]. 09°55’N 43°10’E [BM 1937.12.5.784 (type of *calcaricarens*)]. Kudu Valley, Awash National Park [NHMAA/H.57]. Between Herdu and Oulancheti [BM 1916.6.24.1 (type of *calcaricarens*)].

Field notes. SPAWLS (2000) has recorded the existence of this species, based on specimens confidently identified but not collected, at three additional localities: Shafartak bridge (in the Blue Nile gorge); near Mulu (at an altitude of 2300 m close to the edge of the Mughir River gorge); and in the vicinity of Gambela. At the Mughir gorge site, the species was found most often during the wet season in June to October. A similar association was noted by S. TAYE (pers. comm.) in the more arid lowlands at Lefe Isa, where the animals were common on small trees and shrubs in April, but could not be found during the driest months of December and January, perhaps because they aestivate at this time of year.

Distribution. Western Mali (BÖHME 1985) eastwards to Eritrea, Ethiopia, Djibouti and northern Somalia. If *C. calcaricarens* is distinguishable, its range is probably not as defined by BÖHME (1985), but mainly restricted to the lowlands of Eritrea, Djibouti, northern Somalia and the Afar region of Ethiopia, with only a limited westward extension along the valley of the Awash River.

9 This example from “near Addis Ababa” is a male and the westernmost specimen in which, according to BÖHME (1985), the absence of tarsal spurs and presence of 10 cornified rotulae on the everted hemipenis have been confirmed.
Chamaeleo balebicornutus Tilbury 1998

Chamaeleo (Trioceros) balebicornutus Tilbury 1998: 294, Katcha, 06°42'N 39°44'E, 2400 m, Ethiopia [holotype: ZFMK 63049].

Material examined. Katcha [ZFMK 63049 (holotype)]. Near Shawe River [LIVM 1986.212.245 (paratype)]. Harenna Forest at 06°37'N 39°44'E [ZFMK 63050-63058 (paratypes)].

Distribution. This species (Fig. 8) is known only from the Bale Mountains of Ethiopia, where it has been found in *Podocarpus, Aningeria* and *Schefflera-Hagenia* forest at altitudes of 1700-2400 m.

Chamaeleo bitaeniatus Fischer 1884

*Chamaeleon bitaeniatus; BoulenGER 1896b: 215, 1896c: 10 [part: BM 96.5.30.6-7], 1898a: 720 [part: BM 98.1.28.19].

Chamaeleo Rudis rudis (not Boulenger 1906); Witte 1965: 132 [part: MNHN 1905.152-153].

Material examined. Confluence of the Akaki and Awash Rivers [MNHN 1905.153]. W of Zaguala [BM 1927.7.5.101], “Sedene” (? = Sodere) [MNHN 1905.152]. Lake Abeia (Donaldson Smith = SE corner of Lake Abaya) [BM 95.12.31.19]. Between Badditu and Dime [BM 98.1.28.19]. Coromma [BM 96.5.30.6-7].

Field notes. Spawls (2000) has recorded the existence of this species, based on specimens confidently identified but not collected, at three additional localities: Debret Zeit; Sodere; and Asella.

Distribution. Central and southern Ethiopia, the Imatong Mountains of southern Sudan, northeastern Congo Kinshasa, Uganda, Kenya and northern Tanzania.

Chamaeleo dilepis Leach 1819

Chamaeleo dilepis Leach 1819: 493, Congo Brazzaville.

Chamaeleo dilepis var. Quilensis Bocage 1866: 59, Rio Quilo, Cabinda.

Chamaeleon roperi BoulenGER 1890a: 85, Kilifi, N of Mombasa, Kenya.

Chamaeleon dilepis ruspolii; Parker 1942: 79.
Taxonomic notes. Problems concerning *Chamaeleo dilepis* and its allies are in some ways similar to those which beset the *C. africanaus* group, though they have persisted for much longer. The name *ruspolii* was once considered to represent a subspecies of *C. dilepis* (e.g. Parker 1942, Loveridge 1957), but has more recently been assigned specific status (e.g. Lanza 1983, 1990). Whether this subsequent action was justified seems questionable and the case has certainly not been convincingly argued. The population in northern Somalia and immediately adjacent Ethiopia, to which the name *ruspolii* is applicable, seems morphologically very uniform; the specimens having low counts of temporal and occipital lobe scales and short brow ridges (Boettger 1893a), that make them appear very different from “typical” examples of *C. dilepis* from Kenya, Tanzania and Malawi. However, this East African material is understandably much less uniform, because collected over a far wider area, and it is not difficult to find individuals having characteristics which approach and perhaps even overlap those that are supposedly diagnostic of *ruspolii*. Furthermore, specimens from southern Ethiopia appear morphologically intermediate between *ruspolii* from northern Somalia and *dilepis* from East Africa. If this is a reflection of underlying genetic intergradation, then the case for regarding *ruspolii* as specifically distinct becomes unsustainable.

The apparent absence of this group of chameleons from northern Kenya (Spawls et al. 2002), might be taken as an indication that the population in southern Ethiopia is likely to be isolated from all but those to the north and east (i.e. *ruspolii*). However, the same authors note that the East African population does extend into Somalia and this is confirmed by Lanza (1983, 1990), who listed it as *C. dilepis dilepis*. Unfortunately, Lanza then increased the confusion by recognising in Somalia a further and specifically distinct taxon, *C. quilensis*, despite the fact that other authorities (e.g. Broadley & Howell 1991) believe this name to be a junior synonym of *C. d. dilepis*!

Clearly, the taxonomic complexities within this group of chameleons and the morphological and geographical limits of its constituents are very far from being understood. Rather than agonise about whether *ruspolii* or *dilepis* would be the more appropriate name to apply to specimens from southern Ethiopia, the best solution is surely to refer all NE African material to *Chamaeleo dilepis* and allow posterity to decide, on the evidence of more comprehensive data, whether this term represents a single species or a species-complex.

Distribution. Cameroun to northern Somalia and southwards, across the breadth of the continent, to northern regions of South Africa. Within this huge range a number of named populations have been recognised, including *ruspolii* in NE Africa, but most of these are of questionable validity.
Chamaeleo gracilis Hallowell 1842

Chamaeleon gracilis; **Boulenger** 1896c: 10 [part: BM 96.5.30.5].
Chamaeleon senegalensis (not Daudin 1802); **Boulenger** 1912: 331 [part: BM 1912.6.6.11].
Chamaeleo gracilis gracilis; **Battersby** 1954: 246.

Field notes. **Spawls** (2000) has recorded this species, based on specimens confidently identified but not collected, at Lake Zwai and Lake Langano; while similar data have since been obtained from Jinka and Turmi.

Distribution. Senegal eastwards to southern Somalia and northern Tanzania.

Chamaeleo harennae Largen 1995

Chamaeleo harennae fitchi **Necas** 2004: 4, Arbe Gona, 06°37'N 38°40'E, 2550 m [holotype: ZFMK 81201].

Material examined. 12 km N of Katcha [ZFMK 63059-63062]. Katcha [LIVM 1986.212.246 (holotype)].

Additional material. Riro (Rira) [**Necas** 2004: 4; ZFMK 81200]. Arbe Gona (Arbagona) [**Necas** 2004: 4; ZFMK 81202 (paratype of *fitchi*)].

Taxonomic notes. **Necas** (2004) compared nine near-topotypic specimens of *C. harennae* with over a hundred examples from about 100 km further west at

10 A second specimen was reported to have been obtained from the same locality on 12.XII.1894, but this was evidently an error because on that date Donaldson Smith was further south, at Finik.
Arbagona, and was led to consider the latter population as subspecifically distinct. It is rather difficult to comment on this proposal, because we have not seen Necas’ material and he did not examine ours, but we offer the following observations. *C. h. fitchi* is said to be distinguished from the typical form by a range of characters; including strongly heterogeneous flank scallation, a continuous (not interrupted) dorsal crest, white (rather than rufous) pigmentation on the anterior face of the thigh and a ventral crest that is not white but similar in colour to the surrounding scales. Such features would certainly distinguish the western population from the holotype of *C. harennae*, but not necessarily from other material of the nominate form collected by Colin Tilbury, which we subsequently examined and photographed in 1996 (ZFMK 63059-63062). These four specimens were found to have both strongly heterogeneous flank scallation, continuous dorsal crests and ventral crests which shaded in colour from green anteriorly to white posteriorly. The anterior face of the femur, though not white, was recorded in life as being green, yellow-green, rust-brown or maroon-yellow.

We are also concerned by Necas’ claim that the two known populations of *C. harennae* are geographically isolated, believing this to be most probably an artefact attributable to the fact that no herpetologist has yet visited the intervening area. Absence of evidence should clearly not be interpreted as evidence of absence. The extension of geographical and ecological range that Necas (2004) has documented is of great significance, not least because of its bearing on the conservation status of *C. harennae*, which is evidently rather common even in the degraded environment around Arbagona. Whether there is yet sufficient justification for regarding the species as polytypic seems more debatable, though we have recently learned from P. Necas (in litt.) that he now has molecular data to support his claim.

Field notes. C. Tilbury (pers. comm.) informs us that the four specimens he collected at 3300 m were basking on the tops of ericaceous shrubs shortly after dawn, when the temperature had barely risen above 0 °C.

Distribution. Known only from the Bale Mountains of Ethiopia. On the southern slopes it occupies habitats ranging from *Schefflera-Hagenia* forest at 2400 m to ericaceous shrubs above the treeline at about 3300 m (Tilbury 1998). Further west, at Arbagona where natural montane forest has been almost totally destroyed, the species lives on isolated trees, bushes and even in the hedges surrounding fields and houses (Necas 2004).

Chamaeleo laevigatus Gray 1863

Chamaeleo laevigatus Gray 1863: 95, 500 miles south of Khartoum, Sudan.

Distribution. Chad and the Central African Republic to Eritrea, western Ethiopia, western Kenya and western Tanzania. There is also a recent record from Assuan, in the Nile valley of southern Egypt (Necas 1994).
Genus *Rieppeleon* Matthee, Tilbury & Townsend 2004

Rieppeleon kerstenii (W. Peters 1868)

Chamaeleo Kerstenii W. Peters 1868: 449, "Wanga" (= Wange), south of Mombasa, Kenya.
Rhampholeon robecchii Boulenger 1892: 13, "Wuorandi" (= Warandi), near Obbia, Somalia.
Rhampholeon kerstenii kerstenii; Battersby 1954: 246.

Material examined. 10°00’N 43°00’E [BM 1937.12.5.797]. 09°00’N 44°00’E [BM 1937.12.5.798]. 08°58’N 44°05’E [BM 1937.12.5.799-800]. 08°37’N 45°09’E [BM 1937.12.5.801]. 08°32’N 45°24’E [BM 1937.12.5.802]. 08°29’N 45°34’E [BM 1937.12.5.803-805]. 08°28’N 45°38’E [BM 1937.12.5.806]. 08°20’N 46°00’E [BM 1937.12.5.807]. 08°15’N 46°20’E [BM 1937.12.5.808]. 08°00’N 47°02’E [BM 1931.7.20.386]. 08°00’N 47°07’E [BM 1931.7.20.387]. 08°00’N 48°00’E [BM 1931.7.20.389]. Murri [BM 1952.1.8.80].

Additional material. Neghelli [Scortecci 1940: 149; MZUF 643]. Hauacio [Boulenger 1896c: 10; MSNG 28903] 11.

Distribution. Somalia, eastern Ethiopia, Kenya and northeastern Tanzania.

Family Cordylidae

Genus *Cordylus* Laurenti 1768

Cordylus rivae (Boulenger 1896)

Zonurus rivae Boulenger 1896c: 8, Giacorsa (ca 04°10’N 39°50’E), Ethiopia [holotype: MSNG 28900].
Cordylus cordylus rivae; Loveridge 1944: 32.

Material examined. 100 km E of Neghelli [BM 1977.1238-1241, NHMAA/H.774.1-3].

Distribution. Known with certainty from just two sites in the extreme south of Ethiopia, *C. rivae* is a valid species, widely separated geographically from the nearest congeneric populations in southern Kenya and not closely related to these East African taxa (Broadley & Branch 2002). Yirmed Demeke (1996) reported the presence of *Cordylus* in the Mago National Park, which would be unsurprising on geographical and ecological grounds, but we know of no voucher specimen to support the claim.

11 The record of this species at Moyale (Spawls et al. 2002) was due to an error in documentation.
Genus *Gerrhosaurus* Wiegmann 1828

Gerrhosaurus flavigularis Wiegmann 1828

Additional material. Harar [**NEUMANN** 1905: 397, **TORNIER** 1905: 381; ZMB 18199, 19782, 19800]. ”Abulcassim” (= Abu el Kassim) [**NEUMANN** 1905: 397, **TORNIER** 1905: 381; ZMB 19777].

Field notes. This species has been observed, though not collected, on the W shore of Lake Langano, where it occupies burrows in grassy savanna.

Distribution. Eastern Sudan, Ethiopia and southern Somalia, southwards through Kenya and Tanzania to South Africa.

Gerrhosaurus major A. Duméril 1851

*Gerrhosaurus major var. zeci** **TORNIER** 1901: 74, Kete Kratje, Togo.
Gerrhosaurus major bottegoi; **PARKER** 1942: 77.
Gerrhosaurus major major; **BATTERSBY** 1954: 245.

Additional material. Bisan River [**LOVERIDGE** 1936a: 64, 1942: 498; FMNH 15074].

Distribution. Ghana to Eritrea, Ethiopia and Somalia, thence southwards through Kenya and Tanzania to northeastern South Africa 12.

Family Gekkonidae

Genus *Cnemaspis* Strauch 1887

Cnemaspis dickersonae (Schmidt 1919)

Gonatodes dickersoni **SCHMIDT** 1919: 436, Medje, Ituri, Congo Kinshasa. This species was “named in honor of Miss Mary Cynthia Dickerson” and the incorrect original spelling is here emended.
Cnemaspis dickersoni; **BROADLEY & HOWELL** 1991: 10.

12 D.G. BROADLEY (in litt.) comments that Ethiopian specimens from more northern localities are presumably referable to *G. m. bottegoi*, while those from the Bisan River and Murri are *G. m. major*. He suspects that molecular data might eventually show these taxa to be specifically distinct (BROADLEY 1987).

Distribution. This species exhibits a disjunct distribution (apparently determined by the availability of suitable forest habitat) in southwestern Ethiopia, the Imatong Mountains of southern Sudan, western Uganda, the Ituri Forest in eastern Congo Kinshasa and various more or less isolated montane sites in Kenya and Tanzania.

Genus *Hemidactylus* Oken 1817 14

Hemidactylus albopunctatus Loveridge 1947

Teratolepis taylori Parker 1942: 33, Haud region at 08°15’N 46°20’E, 2100 feet, Ethiopia-Somali border [holotype: BM 1937.12.5.305/1946.8.22.75].

Hemidactylus albopunctatus Loveridge 1947: 107 (new name for *Teratolepis taylori* Parker, preoccupied by *Hemidactylus taylori* Parker 1932).

13 Though currently catalogued in the BM as *C. quattuorseriata* (Sternfeld 1912), these specimens have been previously published by Broadley & Howell (1991) under the name *C. dickersoni*, from "southern Ethiopia (Kaffa)". Perret (1985) believed these taxa to be conspecific.

14 Twenty species of this large and taxonomically complex genus are currently recognised in Ethiopia, after *H. laevis* Boulenger 1901 and *H. mabouia* (Moreau de Jonnés 1818) have been excluded. *Hemidactylus laevis* was recorded from Dolo by Boulenger (1912: 329), but Parker (1942) queried this identification, suggesting that the material might have been referable instead to *H. fragilis* Calabresi 1915; a species still known only from its type locality (Bur Meldac, S of Dinsor) in southern Somalia. Unfortunately, this problem has become impossible to resolve, since the specimens in question can no longer be found in MSNM. According to Lanza (1990), *H. laevis* is known only from the type locality (Gaan Libah) in northwestern Somalia. Boulenger (1896: 550) tentatively referred a single damaged specimen (MSNG 31943) from Harar to *Hemidactylus mabouia*, but this determination was considered by Loveridge (1947) to require confirmation. Such scepticism seems well founded, in view of the fact that the species is otherwise unknown in Ethiopia and Lanza (1983, 1990) does not recognise its presence in Somalia. Spawls et al. (2002), while less than fully convinced about the specific distinction of *H. platycephalus* Peters 1854, nevertheless managed to record the sympatric occurrence of these taxa at two localities on the Ethiopia-Kenya border, though it appears that no museum specimens exist to support this contention. Examples from Murri (BM 1952.1.7.53-76) and Moyale (BM 1952.1.7.77), reported by Battersby (1954: 243) as *H. mabouia*, have proved upon re-examination to be representatives of *H. platycephalus*.

15 A gecko from Murri (BM 1952.1.7.81), reported as *Hemidactylus albopunctatus* by Battersby (1954: 243), was reassessed by several investigators during the 1970s. To judge from notes which they deposited with the specimen, there was a clear consensus that it had been assigned to the wrong taxon, but that its poor condition made any more confident identification impossible. Since that time the specimen appears to have deteriorated still further; with no head and very little skin it seems now to be completely indeterminable.
Hemidactylus arnoldi Lanza 1978

Hemidactylus sp. PARKER 1942: 27 [BM 1937.12.5.296-297].
Hemidactylus arnoldi Lanza 1978a: 243, Guban region at 11°00’N 43°00’E, 1500 feet, Somalia [holotype: BM 1937.12.5.296].

Material examined. 11°00’N 43°00’E [BM 1937.12.5.296-297 (types)].

Distribution. Known only from the type locality in NW Somalia but, since this is located no more than 5 km from the borders of both Djibouti and Ethiopia, the species must surely be present also in these immediately adjacent territories.

Hemidactylus barodanus Boulenger 1901

Additional material. 10°20’N 42°25’E [PARKER 1942: 26; FMNH 26320, formerly BM 1937.12.5.207].

Distribution. Known only from Ethiopia and northern Somalia, the recorded range of this taxon shows a broad discontinuity which is extraordinary and cannot readily be dismissed as an artefact of inadequate collecting. Samples from the eastern and western lowlands of Ethiopia seem morphologically very similar but, since these populations are separated by the huge massif of the central plateau, one cannot help wondering how gene flow could possibly be maintained and whether they are indeed conspecific.

Hemidactylus bavazzanoi Lanza 1978

Hemidactylus bavazzanoi Lanza 1978a: 249, ca 20 km SE of Lugh, at ca 03°40’N 42°40’E, Somalia. SPAWLS et al. 2002: 84.

Material examined. Mandera [CAS 130309].

Distribution. Currently known from only two males: the holotype and a second specimen obtained at Mandera on the Ethiopia-Kenya border.

16 According to Lanza (1983, 1990), _H. barodanus_ is possibly a junior synonym of _H. jubensis_ Boulenger 1895 (as validly represented only by its male syntype: MSNG 28846).
Hemidactylus brookii Gray 1845

Hemidactylus brookii Gray 1845: 153, “Borneo”.

Hemidactylus angulatus Hallowell 1852: 63, “West coast of Africa” (= Gabon).

Hemidactylus brookii angulatus; Battersby 1954: 244.

Distribution. Senegal to Eritrea and Ethiopia, southwards to Tanzania in the east and Angola in the west (*H. b. angulatus*). The typical form is found in the Oriental region and there are introduced populations in parts of Australasia, northern South America and the Caribbean.

Hemidactylus curlei Parker 1942

Hemidactylus curlei Parker 1942: 24, Borama district at 09°55’N 43°10’E, 5000 feet, Ethiopia-Somali border [holotype: BM 1937.12.5.295/1946.8.25.41].

Material examined. 10°05’N 43°00’E [BM 1937.12.5.298-299/1946.8.23.82-83 (types)]. 09°55’N 43°10’E [BM 1937.12.5.295/1946.8.25.41, 1937.12.5.300-303/1946.8.23.78-81 (types)].

Distribution. All known specimens have been taken at the border between Ethiopia and northwestern Somalia.

Hemidactylus isolepis Boulenger 1895

Teratolepis isolepis; Parker 1942: 35.

17 Specimens from Neghelli (MZUF 21190-21191) and Moyale (MZUF 21192-21193) were listed by Scortecci (1940) as “Hemidactylus sp.” Further examples from Gondaraba (MZUF 22001-22002) and Asile (MZUF 25097) were similarly treated by Scortecci (1943). He described them as having the unregenerated tail lanceolate, flattened and basally constricted; longitudinal rows of strongly carinate, trihedral tubercles on the back; a maximum snout-vent length of 60 mm; males with a series of 28-36 preanofemoral pores interrupted medially. These features strongly suggest *H. brookii*, this being the taxon with which Scortecci (1943: 294) was himself most inclined to associate the material and the name under which it is currently catalogued in MZUF.
Lizards of Ethiopia

Material examined. 09°55'N 43°10'E [BM 1937.12.5.310]. 09°50'N 43°15'E [BM 1937.12.5.311-312]. Turfa (River) [BM 95.6.11.1/1946.8.23.95 (holotype)]. NE of Lake Chamo [BM 1969.209]. Moyale [BM 1952.1.7.79].

Field notes. At least in southwestern Ethiopia, this species is rather common and found by day beneath rocks in dry savanna or semi-desert country. It has been identified, though not collected, at Murle; near Turmi (Fig. 9); and on the W side of Lake Stephanie.

Hemidactylus jubensis Boulenger 1895

Hemidactylus jubensis Boulenger 1895b: 10, Upper Ganale (River at ca 05°45'N 39°30'E), Ethiopia [male syntype: MSNG 28846] 18.

Additional material. Milmil [Boulenger 1896c: 6; MSNG 28902].

Distribution. Recorded from only two localities in eastern Ethiopia, but considerably more widespread if H. barodanus Boulenger 1901 is a synonym, as Lanza (1983, 1990) has suggested.

Hemidactylus laticaudatus Andersson 1910

Material examined. 32 km E of Neghelli [BM 1977.2244].

Additional material. Vicinity of Gondar [Calabresi 1925: 101; MSNM-Re858-859]. “Fiume Caha” (= Caa River), below Gondar [Calabresi 1925: 101; MSNM-Re958-959]. “Lago Tsana” (= Lake Tana) [Calabresi 1925: 101; formerly MSNM, but apparently now missing from that collection].

Field notes. At both Gondar and Lalibela, we have observed this species inside buildings, foraging for insects around lamps at night.

18 This taxon, described in March 1895, was based on two syntypes, of which the female (BM 95.3.5.1/1946.8.23.66) is conspecific with H. smithi; the latter being a species named by Boulenger in June of the same year.
Distribution. Known only from Ethiopia and a single locality (Saganeiti) in Eritrea, spanning an altitudinal range of 1570-2200 m.

Hemidactylus macropholis Boulenger 1896

Additional material. Awash National Park [**Lanza** 1972: 164; formerly Awash National Park Museum, now MZUF 22202]. 08°15’N 46°20’E [**Parker** 1942: 27; FMNH 26306-26307]. Dolo [**Bouler** 1912: 229; formerly MSNG, but apparently now missing from that collection]. Ramu [CAS 130231-130235]. Vicinity of Mandera [CAS 130512-130517, 130538-130540, 131691].

Field notes. This species is quite common in rocky, semi-desert areas of the Awash National Park but, unlike _H. laticaudatus_, it does not appear to enter buildings or be attracted to lamps at night.

Distribution. Somalia, eastern Ethiopia and eastern Kenya; possibly southern Eritrea (**Vinciguerra** 1931) and possibly northern Tanzania (**Spawls** et al. 2002).

Hemidactylus ophiolepis Boulenger 1903

Material examined. Amibarra [BM 1902.12.13.2/1946.8.25.40 (holotype)]. Ilala Sala, Awash National Park [LIVM 1995.50.1].

Additional material. Ilala Sala, Awash National Park [**Lanza** 1972: 161; MZUF 12288].

Field notes. This distinctively marked gecko (Fig. 10) seems to be uncommon. In semi-desert areas of the Awash National Park, it has been found on four occasions beneath isolated boulders resting on the soil of open plains, but never amongst the rocks favoured by _H. sinaitus_ and _H. macropholis_.

Distribution. At present known from just two localities, both adjacent to the Awash River in Ethiopia.
Hemidactylus ophiolepoides Lanza 1978

Teratolepis ophiolepoides (not Boulenger 1903); *Parker* 1942: 35 [BM 1937.12.5.324-326].

Material examined. 09°55’N 43°10’E [BM 1937.12.5.326 (type)]. 08°34’N 45°15’E [BM 1937.12.5.324-325 (types)].

Distribution. Known from only two sites, both located on the border between Ethiopia and northwestern Somalia.

Hemidactylus platycephalus W. Peters 1854

Hemidactylus platycephalus W. Peters 1854: 615, Mozambique Island, Mozambique [as restricted by Broadley (1977)].

Hemidactylus mabouia (not Moreau de Jonnés 1818); *Battersby* 1954: 243.

Material examined. Murri [BM 1952.1.7.53-76]. Moyale [BM 1952.1.7.77, 1958.1.1.61-62].

Distribution. Southern Somalia and the Ethiopia-Kenya border, southwards to Mozambique and Zimbabwe.

Hemidactylus robustus Heyden 1827

Hemidactylus robustus Heyden 1827: 19, Egypt, Arabia and Abyssinia [restricted to Abyssinia (= Eritrea) by Mertens (1967: 55)].

Hemidactylus turcicus (not Linnaeus 1758); *Parker* 1942: 27 [part].

Material examined. 10°45’N 43°00’E [BM 1937.12.5.275-277]. 10°10’N 42°50’E [BM 1937.12.5.266-267, 269-272].

Distribution. Egypt southwards to Eritrea, Djibouti, Somalia, eastern Ethiopia and extreme northeastern Kenya; also the coastal margins of the Arabian Peninsula, Iran and Pakistan; introduced to the island of Zanzibar.

19 After many years of uncertainty, recent research on mitochondrial DNA has shown this species to be well differentiated from *H. turcicus*, that has an essentially Mediterranean distribution (E.N. Arnold in litt.).
Hemidactylus ruspolii Boulenger 1896

Hemidactylus erlangeri Steindachner 1907: 355, “Abyssinien” (= Ethiopia).

Distribution. Somalia, southeastern Ethiopia and Kenya.

Hemidactylus sinaitus Boulenger 1885

Hemidactylus sinaitus **Boulenger** 1885: 126, “Mount Sinai” [but almost certainly erroneous, according to **Arnold** (1977)].

Material examined. Mille River [BM 1974.3931]. Kereyu Lodge, Awash National Park [LIVM 1995.50.2].

Distribution. The precise geographical range of *H. sinaitus* is difficult to establish, mainly because the species is so easily confused with *H. robustus* 20. It appears to be present in the lowlands of northeastern Ethiopia and northern Somalia, has been reported from the coasts of Djibouti, Eritrea and Sudan (**Lanza** 1981, 1990) and there is a single record from the Nile Valley at Wadi Halfa (**Schätti & Desvoignes** 1999). In southern Yemen, the species is known with certainty only from the vicinity of Aden and Shuqrah (**Schätti & Desvoignes** 1999).

20 **Loveridge** (1947: 146), who considered both taxa to be conspecific with *H. turcicus* (Linnaeus 1758), noted that most individuals show some combination of their supposedly distinguishing characters. At our request, B. **Lanza** has very kindly re-examined MZUF 12257-12260 from the Awash National Park and confirmed (in litt.) that he still believes these specimens to be *H. sinaitus*. He acknowledges, however, that such material exhibits some diagnostic features in common with *H. robustus* and comments that “we cannot exclude the occurrence of hybrids”.

M.J. Largen and S. Spawls
Hemidactylus smithi Boulenger 1895

Hemidactylus jubenis **Boulenger 1895b**: 10 [part: BM 95.3.5.1/1946.8.23.66].

Hemidactylus smithii; **Parker 1932a**: 341.

Material examined. Axum [BM 1972.745]. 08°32’N 45°24’E [BM 1937.12.5.217]. Haud region (at 08°00’N 47°22’E) [BM 1931.7.20.85-86]. Haud region (at 08°00’N 48°00’E) [BM 1931.7.20.88-89]. (Webi) Shebeli (Donaldson Smith, 5.IX.1894) [BM 95.6.11.2/1946.8.23.65 (holotype)]. Upper Ganale (River) [BM 95.3.5.1/1946.8.23.66 (syntype of *Hemidactylus jubensis*)].

Distribution. Somalia and eastern Ethiopia.

Hemidactylus somalicus Parker 1932

Hemidactylus somalicus **Parker 1932a**: 344, Sol Haud, 10°N 49°E, 3000 feet, Somalia.

Material examined. 08°00’N 47°34’E [BM 1931.7.20.145/1946.8.25.75 (paratype)].

Distribution. Northern Somalia, including the above specimen taken at the border with Ethiopia.

Hemidactylus squamulatus Tornier 1896

Hemidactylus squamulatus **Tornier 1896**: 10, Kakoma, Tanzania.

Distribution. Southern Ethiopia and southern Somalia, southwards to central Tanzania.

Hemidactylus tropidolepis Mocquard 1888

Hemidactylus tropidolepis **Mocquard 1888**: 113, “Pays Çomalys” (i.e. Somalia).

Teratolepis tropidolepis; Parker 1942: 36.

Additional material. 08°17’N 46°09’E [Parker 1942: 36; FMNH 26316-26317]. Dolo [Boulenger 1912: 330; formerly MSNG, but now apparently missing from that collection].

Distribution. Somalia and adjacent parts of Ethiopia; probably also eastern Kenya according to **SPawlS et al. (2002).**
Hemidactylus yerburii Anderson 1895

Hemidactylus yerburii **Anderson** 1895: 640, Aden and Hayt al-Lim, Yemen.
Hemidactylus turcicus (not *Linnaeus* 1758); **Parker** 1942: 27 [part: BM 1937.12.5.274].

Material examined. 09°55'N 43°10'E [BM 1937.12.5.274 (paratype of *pauciporosus*)].

Distribution. Northern Somalia, including a specimen taken at the border with Ethiopia; also southwestern Saudi Arabia, Yemen and southern Oman.

Genus Hemithelconyx Stejneger 1893

Hemitheconyx taylori Parker 1930

Field notes. The animals from Dagah Bur (Fig. 11), like others observed about 70 km to the east at Aware, were found by day in deep burrows (S. Taye pers. comm.). **Parker** (1942) reported that R.H.R. Taylor had obtained most of his specimens from beneath stones, though he also noted that “three examples ... were found together 3 feet underground where they were presumably aestivating through the dry season”. Several animals that we maintained in captivity were not heard to “emit a coughing noise”, such as described by **Parker**, although they did hiss when disturbed. Juveniles are more vividly coloured than adults, being bright orange and black.

Distribution. Known only from northern Somalia and two adjacent localities in eastern Ethiopia.

Genus Holodactylus Boettger 1893

Holodactylus africanus Boettger 1893

Holodactylus africanus **Boettger** 1893a: 114, Abdallah (region at ca 06°10'N 43°20'E), Ethiopia [holotype: SMF 59442]. **Parker** 1932a: 350 1942: 37, **Battersby** 1954: 244; **Spawls et al.** 2002: 74 [Mandera].

Genus *Homopholis* Boulenger 1885

Homopholis fasciata (Boulenger 1890)

Platypholis fasciata [Boulenger 1890a: 81, Mombasa, Kenya.

Material. Upper Ganale (River) [Boulenger 1895b: 11; MSNG 28843].

Distribution. Ethiopia, Somalia, Kenya and Tanzania. The species appears to be uncommon, or at least sporadic in occurrence, throughout its recorded range.

Genus *Lygodactylus* Gray 1864

Lygodactylus grandisonae Pasteur 1962

Lygodactylus somalicus (not Loveridge 1935); Battersby 1954: 244.

Lygodactylus grandisonae [Pasteur 1962: 613, Murri (04°14’N 40°42’E), 900 m, Ethiopia-Kenya border [holotype: BM 1952.1.8.10].

Additional material. Murri [Battersby 1954: 244, Pasteur 1962: 613; MCZ-R53591-53592, formerly BM 1952.1.8.16-17 (types)].

Distribution. Known only from the type locality.

Lygodactylus gutturalis (Bocage 1873)

Hemidactylus gutturalis Bocage 1873: 211, Bissau, Guinea-Bissau.

21 It is possible that BM 1975.2107 from 95 km E of Neghelli represents *Lygodactylus grandisonae*, but this remains uncertain because scattered dark spots on the throat are not arranged to create any detectable longitudinal pattern.
Field notes. At Jinka, this species is syntopic with *L. keniensis* but, while the latter occupies smaller trees and bushes in open situations, *L. gutturalis* was observed to favour the trunks and larger branches of big trees in deep shade.

Distribution. Senegal to Ethiopia, Uganda, Rwanda, Burundi and NW Tanzania.

Lygodactylus keniensis Parker 1936

Additional material. Upper Ganale (River) [Boulenger 1895b: 11 (Lygodactylus picturatus), Loveridge 1947: 228 (Lygodactylus picturatus keniensis); MSNG 28842]. Neghelli [Scortetti 1940: 142 (Lygodactylus picturatus gutturalis), Loveridge 1947: 228 (Lygodactylus picturatus keniensis); formerly MSNM, but now apparently missing from that collection]. Murle [Scortetti 1943: 294 (Lygodactylus picturatus picturatus); MZUF 21987] 22. Bourille [Roux 1936: 161 (Lygodactylus picturatus picturatus), Loveridge 1947: 228 (Lygodactylus picturatus keniensis), Pasteur 1960: 1443 (Lygodactylus picturatus keniensis); MHNP 37.88-89]. Sagan (River) [Scortetti 1943: 294 (Lygodactylus picturatus picturatus); MZUF 21993-21994] 22. ?El Meti [Scortetti 1943: 294 (Lygodactylus picturatus picturatus); formerly MSNM, but now apparently missing from that collection]. Caschei (River) [Scortetti 1943: 294 (Lygodactylus picturatus picturatus); MZUF 21986] 22. Moyale [Scortetti 1940: 142 (Lygodactylus picturatus gutturalis), Loveridge 1947: 228 (Lygodactylus picturatus keniensis); formerly MSNM, but now apparently missing from that collection].

Field notes. While not recorded at altitudes much above 1600 m in Kenya (Spawls et al. 2002), this species reaches 2000 m at both Debre Zeit and Felenguai in Ethiopia. It is syntopic with *L. gutturalis* at both Felenguai and Jinka, though field observations at the latter site indicate that the two taxa may be ecologically isolated (as described above).

Distribution. Ethiopia, southern Somalia and Kenya.

Lygodactylus somalicus Loveridge 1935

Lygodactylus somalicus annectens Loveridge 1935: 197, Buran district, Somalia.

Lygodactylus somalicus battersbyi Pasteur 1962: 612, Haud region at 08°15’N 46°20’E, 700 m, Ethiopia-Somali border [holotype: BM 1937.12.5.331].

22 Scortetti’s (1943) material from Murle, Sagan and Caschei is listed in MZUF as *Lygodactylus p. keniensis*.
Lizards of Ethiopia

Additional material. 08°30'N 46°25'E [Parker 1942: 39; FMNH 26312-26313, Pasteur 1962: 612; FMNH 26312]. Odamuda [Tornier 1905: 368 (Lygodactylus conradti), Loveridge 1947: 201 (Lygodactylus somalicus annectens); ZMB 19797]. Between Badditu and Dime [Boulenger 1898a: 716 (Lygodactylus capensis), Loveridge 1947: 201 (Lygodactylus somalicus annectens); formerly MSNG, but now apparently missing from that collection]. Dolo [Boulenger 1912: 330 (Lygodactylus capensis), Loveridge 1947: 201 (Lygodactylus somalicus annectens); formerly MSNG, but now apparently missing from that collection]. Moyale [CAS 129947, 129950, 129959].

Genus Pristurus Rüppell 1835

Pristurus crucifer (Valenciennes 1861)

Gymnocephalus crucifer Valenciennes 1861: 433, “Abyssinie” [= Eritrea].

Distribution. Eritrea, eastern Ethiopia, Somalia and extreme northeastern Kenya; also coastal areas of western Yemen.

Pristurus flavipunctatus Rüppell 1835

Material examined. Parker 1932a: 347.

Additional material. Mille River [BM 1974.3932-3935]. 09°50'N 43°20'E [BM 1937.12.5.139-144]. 08°55'-08°15'N 44°20'-46°25'E [BM 1937.12.5.150-157]. Bohodle [BM 23 It appears that data relating to this specimen may have been mistakenly transferred to another lizard, labelled Hemidactylus mabouia; a species which Bouleneger (1898a) did not record from Ethiopia.
1937.12.5.161-162]. Haud region (at 08°00'N 47°00'E) [BM 1931.7.20.157]. Haud region (at 08°00'N 47°22'E) [BM 1931.7.20.158]. Ado [BM 1937.12.5.147-148].

Additional material. Amhara (region) [BOULENGER 1909: 193; MSNG 27777]. Milmil [BOULENGER 1895a: 531; ANSP 4634]. Dolo [BOULENGER 1912: 329; MSNG 29173].

Distribution. Sudan, Eritrea, Djibouti, eastern Ethiopia and Somalia; also coastal areas of the southwestern Arabian Peninsula.

Pristurus rupestris Blanford 1874

Pristurus rupestris Blanford 1874: 454, Muscat, Oman [as restricted by SCHMIDT (1952)]. PARKER 1942: 42.

Material examined. 10°05'N 43°00'E [BM 1937.12.5.190-191]. 09°55'N 43°10'E [BM 1937.12.5.192, 195-198]. 09°50'N 43°25'E [BM 1937.12.5.199-201].

Distribution. Northern Somalia (including the border with Ethiopia), Djibouti, islands in the Dahlac Archipelago of Eritrea; also coastal regions of the Arabian Peninsula and Iran.

Pristurus somalicus Parker 1932

Pristurus somalicus Parker 1932a: 349, Sol Haud, 10°27'N 49°E, 2500 feet, Somalia. **Pristurus phillipsi** (not Boulenger 1895); PARKER 1942: 43 [part: including BM 1937.12.5.189].

Material examined. 08°15'N 46°20'E [BM 1937.12.5.189].

Distribution. Somalia, including a single specimen taken at the border with Ethiopia.

Genus *Ptyodactylus* Goldfuss 1820

Ptyodactylus ragazzii Anderson 1898

Ptyodactylus hasselquistii var. ragazzii Anderson 1898: 69, Ghinda, Eritrea. *Ptyodactylus hasselquisti* (not Donndorff 1798); PARKER 1942: 44.

24 SCORTECCI (1935), PARKER (1942), LOVERIDGE (1947), LANZA (1983, 1990) and others have all treated *Pristurus somalicus* as a synonym of *P. phillipsii* Boulenger 1895. However, the differences between these taxa, first documented by PARKER (1932a), are very evident when their types are compared and, since the two forms are syntopic (PARKER 1942), there seems to be good reason for considering them distinct. This being the case, the correct name for BM 1937.12.5.189, obtained at the Ethiopia-Somali border, is clearly *P. somalicus*.
Material examined. 10°30’N 42°40’E [BM 1937.12.5.131-133].

Additional material. Gumboworen [TORNIER 1905: 368; ZMB 19773]. Fulla Valley [TORNIER 1905: 368; ZMB 18182].

Distribution. Algeria, Mali and Ghana, eastwards to Sudan, Eritrea, Djibouti and northwestern Somalia, including the border with Ethiopia.

Genus *Stenodactylus* Fitzinger 1826

Stenodactylus sthenodactylus (Lichtenstein 1823)

Ascalabotes sthenodactylus LICHTEINSTEIN 1823: 102, Egypt and “Nubia” (= Sudan). *Stenodactylus sthenodactylus zavattarrii* SCORTECCl 1943: 294, Elolo (= Banya, 04°23’N 36°14’E), Lake Turkana, Kenya.

Distribution. Mauretania, eastwards to Egypt, Sudan, Eritrea (almost certainly western Ethiopia, though not yet recorded from this country) and northwestern Kenya; also Israel and Syria.

Genus *Tarentola* Gray 1825

Tarentola annularis (I. Geoffroy 1827)

Tarentola annularis; PARKER 1942: 44.

25 LOVERIDGE (1947) and LANZA (1983) give 1823 as the date of publication, while LANZA (1990) gives 1809. TOLLIET (1986) notes some evidence that pp. 115-120 (written by E. Geoffroy) may have been issued as early as 1809, but cites 1827 for pp. 121-160, subsequently contributed by his son.
Field notes. A conspicuously large gecko (sometimes exceeding 20 cm in length), usually easily recognised by having in the shoulder region four prominent white spots arranged in the form of a square (Fig. 12). Although most commonly found in rocky areas, the species survives in open country if there are cracks in the earth or isolated boulders where it can hide. At night it may forage for insects around lamps.

Distribution. Mauretania, eastwards to Egypt, Sudan, Eritrea, Djibouti, eastern Ethiopia and northern Somalia.

Genus *Tropiocolotes* Peters 1880

Tropiocolotes somalicus Parker 1942

Tropiocolotes somalicus Parker 1942: 46, 10°20'N 42°50'E, 3000 feet, Ethiopia-Somali border [holotype: BM 1937.12.5.693/1946.8.23.55].

Material examined. 10°20'N 42°50'E [BM 1937.12.5.693/1946.8.23.55 (holotype)].

Distribution. Northwestern Somalia, including one specimen (the holotype) taken at the border with Ethiopia.

Family Lacertidae

Genus *Heliobolus* Fitzinger 1843

Heliobolus neumanni (Tornier 1905)

Eremias neumanni Tornier 1905: 376, Barssa Valley, Male region (at ca 05°55'N 37°00'E), Ethiopia [holotype: formerly ZMB 18356, but now apparently lost (Bauer & Günther 1995: 55)].

Material examined. NE corner of Lake Chamo [BM 1969.260].

Distribution. Ethiopia, Kenya and Tanzania; but strangely sporadic in occurrence and recorded only from very few, widely scattered localities (Spawls et al. 2002).

Heliobolus spekii (Günther 1872)

Eremias spekii Günther 1872: 381, Unyamwezi, Tanzania.

Material examined. 09°55′N 43°05′E [BM 1937.12.5.380-381]. Bisidima River, E of Harar [BM 1969.1243]. Dakhato (= Dacata) River [BM 1937.12.5.382-387]. 08°20′N 46°00′E [BM 1937.12.5.389]. 08°15′N 46°10′E [BM 1937.12.5.390]. 08°15′N 46°20′E [BM 1937.12.5.391-393]. Daghhabur [BM 1937.12.5.388]. Haud region (at 08°00′N 47°27′E) [BM 1931.7.20.312]. Haud region (at 08°00′N 47°34′E) [BM 1931.7.20.313]. Haud region (at 08°00′N 48°00′E) [BM 1931.7.20.314-318]. 10 km NE of Sof Omar [BM 1977.2246]. “Boran country” (= Borana region: Donaldson Smith, 24.11.1895) [BM 1931.7.20.319]. dolo [BM 1912.6.6.6]. Between San-curar and Amarr [BM 95.12.31.12]. W of Juba River (Donaldson Smith, 19.III.1895 = Sancurar) [BM 1931.7.20.320]. Mandera [CAS 130465-66, -67, -68, -69, -70, -71, -72, -73, -74, -75-76, -77, -78, -79, -80, -81, -82, -83, -84, -85, -86, -87, -88, -93-94, 130501].

Distribution. Southern Sudan, southern Ethiopia and Somalia, southwards through Kenya and Uganda to central Tanzania.

Genus *Latastia* Bedriaga 1884

Latastia boscai Bedriaga 1884

Latastia wachei Werner 1913: 16, Dire Daua region (ca 09°35′N 41°52′E), Ethiopia [syntypes: ZMB 29458, 29460]; 70 km NW of Harrar (ca 09°45′N 41°45′E), Ethiopia [syntypes: ZMH-R01224-01225].

Latastia boscai arenicola Parker 1942: 71, Haud region at 08°15′N 46°20′E, 2100 feet, Ethiopia-Somali border [syntypes: BM 1937.12.5.596-597/1946.9.2.96-97]; Haud region at 07°55′N 47°50′E, 1900 feet, Ethiopia [syntypes: BM 1931.7.20.343-344/1946.9.4.92-93]; Ado, 07°20′N 45°15′E, 2100 feet, Ethiopia [syntype: BM 1937.12.5.595/1946.9.2.98]; Dolo (04°11′N 42°05′E), Ethiopia [syntype BM 1912.6.6.6/1946.9.4.94].

Material examined. 10°30′N 42°40′E [BM 1937.12.5.570-572]. 10°10′N 42°50′E [BM 1937.12.5.573-576]. 10°10′N 43°10′E [BM 1937.12.5.585]. 10°00′N 43°00′E [BM 1937.12.5.577-579]. 09°55′N 43°10′E [BM 1937.12.5.582-584]. 09°50′N 43°25′E [BM 1937.12.5.590-594].
Latastia caeruleopunctata Parker 1935

Additional material. Djildessa [Neumann 1905: 395 (Latastia carinata), Tornier 1905: 375 (Latastia carinata); ZMB 19793-19794]. 08°10'N 43°40'E [Parker 1935: 527; FMNH 26308-26309, formerly BM 1936.6.12.17-18 (types)]. 08°00'N 45°50'E [Parker 1942: 69; formerly BM, but never catalogued by this institution and now apparently missing]. Mandera [CAS 130378].

Distribution. Somalia and southeastern Ethiopia, at least as far south as the Kenyan border.

Latastia doriai Bedriaga 1884

Latastia Doria Bedriaga 1884: 313, Rugdea Sogheira (09°40'N 41°02'E), Ethiopia [syntypes: BM 85.6.15.2-4/1946.9.2.85-87, MSNG 28250].

Latastia longicaudata doriai; Parker 1942: 69.

Latastia doriai doriai; Arillo et al. 1967: 137.

Additional material. ?"Daba-as" (= Dabahs River) [Neumann 1905: 393 (Latastia longicaudata), Tornier 1905: 373 (Latastia longicaudata); ZMB 19822].

Distribution. Eritrea, Djibouti, northwestern Somalia and adjacent regions of Ethiopia.

Latastia longicaudata (Reuss 1834)

Lacerta longicaudata Reuss 1834: 29, Massawa, Eritrea [as designated by Schätti (2001)].

Eremias revolli Vaillant 1882: 20, "Pays Comalis" (i.e. Somalia).

Latastia longicaudata; Boulenge 1896b: 215 [part: BM 95.12.31.11].

Latastia longicaudata longicaudata; Parker 1942: 68; Arillo et al. 1967: 117.

26 These two specimens from the Dabahs River are provisionally listed as L. doriai, since both were reported by Tornier (1905) to have only five femoral pores on each thigh.
20 km N of Malca Guba, on Daua Parma to Neghelli road [BM 1978.990]. Lake Stephanie (Donaldson Smith, 18.VI.1895) [BM 95.12.31.11].

Distribution. Senegal to southeastern Egypt, southwards through Sudan, Eritrea, Ethiopia, Somalia and Kenya to central Tanzania; also found in Yemen.

Genus *Mesalina* Gray 1838

Mesalina martini (Boulenger 1897)

Eremias Martini Boulenger 1897: 467, Obok, Djibouti.
_Eremias guttulata olivieri* (not Audouin 1829); Parker 1942: 60.

Material examined. 11°00’N 43°00’E [BM 1937.12.5.482-484]. 10°30’N 42°40’E [BM 1937.12.5.478].

Additional material. “Arruena” (= Aroweina) [TORNIER 1905: 381 (Eremias guttulata); ZMB 19802]. 10°20’N 42°50’E [PARKER 1942: 60; MCZ-R49122-49123, formerly BM 1937.12.5.479-480].

Distribution. Western coast of the Red Sea from Sinai in Egypt, southwards to Eritrea, Djibouti, northwestern Somalia and immediately adjacent parts of Ethiopia; also found in Yemen.

Genus *Philochortus* Matschie 1893

Philochortus hardeggeri (Steindachner 1891)

Latasia hardeggeri Steindachner 1891: 371, between Hensa and Artu, Somalia.
Philochortus hardeggeri*; PARKER 1942: 76.

Distribution. Somalia, Djibouti and adjacent parts of eastern Ethiopia.
Philochortus intermedius Boulenger 1917

Material examined. 10°10’N 43°00’E [BM 1937.12.5.603-604]. 10°05’N 43°00’E [BM 1937.12.5.598-600]. Haud region (at 08°00’N 47°04’E) [BM 1931.7.20.323] 27.

Distribution. Somalia and adjacent parts of eastern Ethiopia. The species is unknown in Eritrea and Sudan and its presence in northern Egypt, where reported by Marx (1968), must be considered highly suspect. Philochortus zolii Scortecci 1934, known only from Libya and once treated as a subspecies of P. intermedius, is now considered to be distinct (Schleich et al. 1996).

Philochortus phillipsii (Boulenger 1898)

Latastia phillipsii Boulenger 1898b: 131, Berbera, Somalia. Philochortus hardegeri taylori Parker 1932a: 354, 11°05’N 49°E, 600 feet, Somalia; 10°20’N 49°E, 2400 feet, Somalia; Dagah Shabell, 1700 feet, Somalia; 09°N 49°E, 2500 feet, Somalia; 08°N 47°34’E, 2000 feet, Ethiopia-Somali border [syntype: BM 1931.7.20.332]; 08°N 48°E, 2000 feet, Ethiopia-Somali border [syntypes: BM 1931.7.20.327-330/1946.9.3.36-39].

Philochortus phillipsii; Parker 1942: 76.

Material examined. 08°00’N 47°34’E [BM 1931.7.20.332 (type of taylori)]. 08°00’N 48°00’E [BM 1931.7.20.327-330/1946.9.3.36-39 (types of taylori)].

Distribution. Eastern Ethiopia to northern and central Somalia.

Philochortus rudolfensis Parker 1932

Philochortus intermedius rudolfensis Parker 1932b: 226, near mouth of Kaliokwell River, Lake Rudolf (= Lake Turkana), Kenya 28.

27 Parker (1942: 75) listed a specimen from 08°28’N 45°38’E (BM 1937.12.5.605) as “Philochortus intermedius subspec.?” , noting that the dorsal scales are exceptionally strongly keeled and longitudinal pale lines completely lacking. He might have added that it also possesses only 30 dorsal scale rows and 11 femoral pores on each thigh. Clearly, this is not P. intermedius, but seems very likely to represent an undescribed species, although further investigation of this possibility would require more material of better quality.

28 Only recently recognised (by Sparwals et al. 2002) as being specifically distinct from P. intermedius, with distinguishing features that include a much longer tail, feebly keeled dorsal scales, a lower mid-body scale count and fewer femoral pores; all characters mentioned also by Parker (1932b).
Material. Mandera [LANZA 1990: 428 (Philochortus intermedius), SPAWLS et al. 2002: 164 (Philochortus rudolfensis); CAS 130490, 130500].

Distribution. This lizard is currently known from just four localities in the arid lowlands of northern Kenya (including Mandera on the border with Ethiopia) and might well be expected to extend into similar habitat further north.

Philochortus spinalis (W. Peters 1874)

Lacerta spinalis W. Peters 1874: 369, Bogos (region), Eritrea.
Philochortus spinalis; PARKER 1942: 75.
Philochortus intermedius intermedius (not Boulenger 1917); PARKER 1942: 75 [part: BM 1937.12.5.602].

Additional material. Between Balci and “Ciadafena” (= Ciaffedenza) [SCORTECCI 1930: 9; MZUT-R2438]. “Balinga Motscho” (= Moggio River) [NEUMANN 1905: 395 (Latastia spinalis), TORNIER 1905: 375 (Latastia spinalis); ZMB 19791]. Odamuda [NEUMANN 1905: 395 (Latastia spinalis), TORNIER 1905: 375 (Latastia spinalis); ZMB 19752].

Distribution. Eritrea to northwestern Somalia and adjacent regions of Ethiopia.

Genus Pseuderemias Boettger 1883

Pseuderemias brenneri (W. Peters 1869)

Eremias Brenneri W. Peters 1869: 432, “Barava” (= Baraawe), Somalia. PARKER 1942: 64.

Additional material. 08°15’N 46°20’E [PARKER 1942: 64; MCZ-R49130, formerly BM 1937.12.5.525].

Distribution. Somalia, eastern Ethiopia, Djibouti and perhaps Eritrea.

Pseuderemias mucronata (Blanford 1870)

Acanthodactylus mucronatus BLANFORD 1870: 453, Anseba (Valley), Eritrea.
Eremias striata (not Peters 1874); PARKER 1932a: 354.
Eremias mucronata; PARKER 1942: 61.
Lizards of Ethiopia

Material examined. 10°20′N 42°45′E [BM 1937.12.5.423-460]. Haud region (at 08°00′N 48°00′E) [BM 1931.7.20.298/1946.9.8.7 (type of *septemstriata*)].

Additional material. Artu [NEUMANN 1905: 396; TORNIER 1905: 381; ZMB 19829]. Abdallah (region) [BOETTGER 1893a: 115; specimen not found in SMF, so presumed lost]. “Webithal” (= Webi Shebeli) [BOETTGER 1893a: 115; specimen not found in SMF, so presumed lost].

Distribution. Southeastern Egypt, southwards along the west coast of the Red Sea, through Eritrea and eastern Ethiopia to central Somalia.

Pseuderemias smithi (Boulenger 1895)

Eremias smithi BOULENGER 1895a: 534, Milmil (08°18′N 43°53′E), Ethiopia [holotype: BM 95.6.11.4/1946.8.6.35]. PARKER 1942: 62.

Material examined. Borama district (at 09°55′N 43°10′E) [BM 1937.12.5.404]. Borama district (at 09°50′N 43°15′E) [BM 1937.12.5.405-410]. Borama district (at 09°50′N 43°20′E) [BM 1937.12.5.411-419]. Milmil [BM 95.6.11.4/1946.8.6.35 (holotype)].

Distribution. Eastern Ethiopia, Somalia and northern Kenya.

Pseuderemias striata (W. Peters 1874)

Eremias brenneri var. *striatus* W. PETERS 1874: 370, “Barawa” (= Baraawe), Somalia.

Eremias striata; PARKER 1942: 64.

Material examined. 08°42′N 44°54′E [BM 1937.12.5.464-471]. 08°15′N 46°20′E [BM 1937.12.5.473-477].

Additional material. 08°42′N 44°54′E [PARKER 1942: 64; MCZ-R49131, formerly BM 1937.12.5.472]. Web (Ueb River) [BOULENGER 1896d: 18; MSNG 10123]. Confluence of the Web (Ueb) and Ganana (= Ganale) Rivers [BOULENGER 1896d: 18; MSNG 10122].

Distribution. Eastern Ethiopia, Djibouti, Somalia and perhaps Kenya.

Family Scincidae

Genus *Chalcides* Laurenti 1768

Chalcides ocellatus (Forsskål 1775)

Lacerta ocellata FORSSKÅL 1775: 13, Egypt.

Gongylus ocellatus; BLANFORD 1870: 456.
Material examined. Ashangi (Lake) [BM 69.11.4.14-15]. NE slope of Mt Fantalle [BM 1969.1181]. Kereyu Lodge, Awash National Park [NHMAA 2000.36-37].

Additional material. N slope of Mt Fantalle [LANZA 1972: 166; MZUF 12266-12267]. Awash National Park, near entrance [LANZA 1972: 166; MZUF 12245-12250].

Distribution. North Africa from Morocco eastwards to Egypt, Sudan, Eritrea, northeastern Ethiopia and (mainly coastal) Somalia; also islands in the Mediterranean, Greece and Turkey, southwards around the periphery of the Arabian Peninsula and eastwards along the shores of the Persian Gulf to coastal Pakistan.

Chalcides ragazzii Boulenger 1890

Chalcides ocellatus var. *ragazzii* **BOULENGER** 1890b: 444, Assab, Eritrea. *Chalcides bottegi* **BOULENGER** 1898a: 719, between Sancurar (04°02'N 40°08'E) and Amarr (ca 05°20'N 38°00'E), Ethiopia [holotype: MSNG 28569].

Chalcides ocellatus (not Forsskål 1775); **PARKER** 1942: 83; **LANZA** & **CARFI** 1968: 246 [part].

Genus **Lygosoma** Hardwicke & Gray 1827

Lygosoma afrum (W. Peters 1854)

Eumeces afer **W. PETERS** 1854: 619, Mozambique Island, Mozambique [as restricted by **BROADLEY** (1966)].

Genus **Lygosoma** Hardwicke & Gray 1827

Lygosoma afrum (W. Peters 1854)
Additional material. ?Sheikh Husein [BOULENGER 1895a: 535, 1896b: 215 (Lygosoma sundevallii); ANSP 4678-4679, 4839]. ?Wageli [BOULENGER 1896c: 10 (Lygosoma sundevallii); MSNG 28911 (part)]. Calam (Kelam) [SCORTECCI 1943: 302 (Riopa sundevallii); MSNM-Re2248] ²⁹. ?Lake Stephanie (Donaldson Smith, 18.VI.1895) [BOULENGER 1896b: 215 (Lygosoma sundevallii); ANSP 4677]. Caschei (River) [SCORTECCI 1943: 302 (Riopa sundevallii); MSNM-Re2250] ²⁹. Dolo [BOULENGER 1896c: 10 (Lygosoma sundevallii), LANZA & CARFI 1968: 235 (Mochlus afer); MSNG 28911 (part). BOULENGER 1912: 330 (Lygosoma sundevallii), LANZA & CARFI 1968: 235 (Mochlus afer); MSNG 27859].

Distribution. Sudan, Ethiopia and Somalia, southwards to Mozambique.

Lygosoma paedocarinatum (Lanza & Carfi 1968)

Riopa laeviceps (not Peters 1874); PARKER 1942: 89. Mochlus laeviceps paedocarinatus LANZA & CARFI 1968: 240, Haud region at 08°15’N 46°20’E, 2100 feet, Ethiopia-Somali border [holotype: BM 1937.12.5.713].

Additional material. 08°15’N 46°10’E [PARKER 1942: 89; MCZ-R49132-49133, formerly BM 1937.12.5.707-708]. 08°15’N 46°20’E [PARKER 1942: 89; FMNH 26314, PARKER 1942: 89, LANZA & CARFI 1968: 240; MZUF 10828, formerly BM 1937.12.5.709 (type)].

Distribution. Known only from the above material, all collected by R.H.R Taylor in the vicinity of the border between Ethiopia and northern Somalia.

Lygosoma somalicum (Parker 1942)

Riopa modesta somalica PARKER 1942: 90, near Berbera, inland of Berbera and Wagga (Goolis Mts), Somalia; 10°10’N 42°50’E, 4500 feet, Ethiopia [syntype: BM 1937.12.5.746/1946.8.7.6]; 10°05’N 43°00’E, 5500 feet, Ethiopia [syntype: BM 1937.12.5.747/1946.8.7.5].

Riopa modestum modestum (not Günther 1880); BATTERSBY 1954: 246 ³⁰. Mochlus sundevallii (not Smith 1849); LANZA & CARFI 1968: 240 [part: northern Somalia].

Material examined. 10°10’N 42°50’E [BM 1937.12.5.746/1946.8.7.6 (type)]. 10°05’N 43°00’E [BM 1937.12.5.747/1946.8.7.5 (type)]. Murri [BM 1952.1.8.30].

²⁹ SCORTECCI’s (1943) material should clearly be assigned to L. afrum, on the evidence of his statement that in these specimens “la narice è compresa tra una grande sopranasale e due nasali”.

³⁰ LANZA (1990) believes modestum to be the northern subspecies of L. sundevallii, though BROADLEY & HOWELL (1991) consider it indistinguishable from the typical form. However, BATTERSBY’s specimen from Murri (BM 1952.1.8.30) compares much more favourably with the types of L. somalicum, particularly regarding relative length of the fifth toe and the number of its subdigital lamellae. LANZA (1990) listed somalicum only from NW Somalia and adjacent Ethiopia, but LAURENT & GANS (1965) had previously recorded this taxon from near Afgoi in S Somalia and SPAWLS et al. (2002) have since reported its occurrence as far afield as SE Kenya and NE Tanzania.
Additional material. ?Sheikh Husein [BOULENGER 1895a: 535 (Lygosoma modestum); ANSP 4676?] 31.

Distribution. Northern Somalia, southwards through eastern Ethiopia to eastern Kenya and northeastern Tanzania (SPAWLS et al. 2002).

Lygosoma sundevelallii (A. Smith 1849)

Eumices (Riopa) sunderallii A. SMITH 1849: 11, “eastward of Cape Colony” (but most probably western Transvaal, according to BROADLEY 1966), South Africa.
Sepacontias modestus GUNHER 1880: 235, Mpwapwa, Ugogo, Tanzania.

Material examined. Omo River, near Bongosi [NHMAA/H.917].

Distribution. Angola, Namibia and South Africa northwards to Kenya, but apparently rare in southern Ethiopia, in southern Somalia (LANZA 1990) and in Uganda (SPAWLS et al. 2002).

Lygosoma vinciguerrae Parker 1932

Lygosoma vinciguerrae PARKER 1932a: 361, Lugh, Somalia.
Riopa vinciguerrae; PARKER 1942: 91.

Additional material. 08°14′N 46°19′E [PARKER 1942: 91; formerly BM, but apparently never catalogued by this institution]. 08°15′N 46°20′E [PARKER 1942: 91; FMNH 26310-26311; MCZ-R49134, formerly BM 1937.12.5.725]. Bohodle [PARKER 1932a: 361, LANZA & CARFIL 1968: 242; MSNG 8688 (paratype)].

Distribution. Somalia and immediately adjacent regions of eastern Ethiopia.

31 Both PARKER (1942) and LANZA (1990) found reason to suppose that this record might be based upon L. somalicum. It seems to have been derived from ANSP 4676, though this specimen is listed with neither locality nor collection date in the original manuscript catalogue of that museum and does not appear at all in the current database of ANSP holdings.
32 SCORTECCI (1943) says of his specimen from Murle: “Il secondo dito del piede è nettamente più lungo del quinto e questo ha inferiormente 6 o 7 lamelle”.
Lizards of Ethiopia

Genus *Mabuya* Fitzinger 1826

Mabuya brevicollis (Wiegmann 1837)

Euprepes brevicollis WIEGMANN 1837: 133, “Abyssinia” (= Eritrea).

Mabuya chanleri STEJNEGER 1893: 721, Tana River, Kenya.

Mabuya Rothschildi MOCQUARD 1905: 286, Endessa (ca 08°50'N 40°00'E), Ethiopia [holotype: MNHN 1905.0165].

Mabuya brevicollis; PARKER 1942: 86.

Field notes. In October 2001, a female from the Awash National Park gave birth to three young that measured about 8.5 cm in length; two young were produced by a female from Dagah Bur (Fig. 13).

Distribution. Sudan and Eritrea, southwards through eastern Ethiopia, Djibouti, Somalia, Kenya and eastern Uganda to northern Tanzania; also the southern Arabian Peninsula.

Mabuya hildebrandtii (W. Peters 1874)

Euprepes (Euprepis) Hildebrandtii W. PETERS 1874: 372, "Barawa" (= Baraawe), Somalia.

Records. Abdallah (region) [BOETTGER 1893a: 116 (Mabuya hildebrandtii); specimen not found in SMF, so presumed lost]. "Webithal" (= Webi Shebeli) [BOETTGER 1893a: 116 (Mabuya hildebrandtii); specimen not found in SMF, so presumed lost].

33 Although MAUSFELD et al. (2002) favour partitioning the genus *Mabuya* and BAUER (2003) has shown that the earliest available name for their supposed "Afro-Malagasy clade" would be _Trachylepis_ Fitzinger 1843, we note that this remains a contentious issue. For example, E.N. ARNOLD (in litt.) argues that MAUSFELD and his colleagues have failed to convincingly demonstrate the need for radical taxonomic changes, since all their proposed subdivisions apparently lie "within a more or less monophyletic *Mabuya* and it is consequently not misleading to leave all the species within that genus". We therefore decline to promote the use of _Trachylepis_ on the basis of disputed evidence, preferring to avoid the nomenclatural confusion such a change would inevitably cause and wait for conflicting opinions to be more satisfactorily resolved.
Distribution. Widespread in Somalia and presumably present also in neighbouring regions of eastern Ethiopia.

Mabuya isselii (W. Peters 1871)

Distribution. Apparently confined to Eritrea and Ethiopia, at altitudes of about 1000-2500 m on the central plateau and its immediately adjacent foothills; usually occupying more or less open grassland sites, but recorded also from riverine forest.

Mabuya maculilabris (Gray 1845)

Euprepis maculilabris Gray 1845: 114, “West Africa”.

Field notes. *M. maculilabris* has been observed, though not collected, at Bahar Dar. While not strictly a sylvicolous form, its populations in southwestern Ethiopia have been found to occupy trees and bushes at the margins of forest clearings; a habitat which they share with few other lizards.

Distribution. Senegal to Somalia, southwards to Angola in the west and Mozambique in the east, but localised within this huge range. Because the species favours relatively humid environments, it is apparently confined to western regions.

34 This species is common in both northern and southern Somalia (LANZA & CARFI 1968, LANZA 1990), so it must surely be present also in the Ogaden region of Ethiopia. Unfortunately, its existence in this area has been reported only once, on the evidence of “zwei junge schlecht erhaltene Stücke” (BOETTGER 1893a), and the identity of this material cannot now be confirmed. Formerly in the Senckenberg Museum at Frankfurt, these specimens can no longer be found in the catalogue or collections of that institution (G. KOHLER in litt.).

35 CALABRESI’s two specimens from Gondar are considered to be correctly identified, having been referred to this taxon on the evidence of a single frontoparietal shield.
of Ethiopia, to southern parts of Somalia and has a similarly restricted distribution in East Africa (Spawls et al. 2002).

Mabuya megalura (W. Peters 1878)

Euprepes (Mabuia) megalura W. Peters 1878: 204, Teita, Kenya.

Field notes. Where there is open grassland at medium to high altitude, this species is often quite common in Ethiopia. It is viviparous and neonates have been observed at Mulu farm in November and December, which are the driest months of the year at this locality.

Distribution. Ethiopia, south through Kenya, Uganda and eastern Congo Kin-shasa to central Mozambique; mostly at higher elevations, though recorded from sea level in both Tanzania and Mozambique.

Mabuya planifrons (W. Peters 1878)

Euprepes (Euprepis) planifrons W. Peters 1878: 203, Teita, Kenya.

Mabuya planifrons; Parker 1942: 87; Battersby 1954: 246.

Distribution. Eastern and southern Ethiopia, Somalia and thence southwards to northern Zambia and southeastern Congo Kinshasa.

Mabuya quinquetaeniata (Lichtenstein 1823)

Scincus quinquetaeniatus LICHTEINSTEIN 1823: 103, Egypt and “Nubia” (= Sudan).

Mabuya quinquetaeniata quinquetaeniata; PARKER 1942: 87.

Mabuya quinquetaeniata; LANZA & CARFI 1968: 223.

36 This specimen, though attributed to the appropriate collector, is registered in MSNG with a different provenance (Rahanuin region, Somalia), from where BOULENGER (1912) did not record the species. Either the catalogue entry or BOULENGER’s account must be wrong and it might be significant that extensive fieldwork in the Awash National Park has failed to reveal the presence of M. planifrons in this region of Ethiopia.
Distribution. Mali, eastwards to Eritrea, Ethiopia and northern Somalia, thence northwards to Egypt and southwards through southern Sudan, Uganda, northeastern Congo Kinshasa and Kenya to northern Tanzania. Records indicate that this lizard is far more common in western regions of Ethiopia than in the southeast, it is absent from most of Somalia (Lanza 1990) and its occurrence in Kenya is decidedly sporadic (Spawls et al. 2002). The reason for such patchy distribution, though presumably ecological, seems rather obscure. Spawls et al. (2002) associate the species particularly with rocky outcrops and lava fields, but note that it will also live on tree trunks and colonise man-made structures such as houses and bridges.

Mabuya striata (W. Peters 1844)

Tropidolepisma striatum W. Peters 1844: 36, Mozambique Island, Mozambique.

Mabuya striata; Boulenger 1896a: 551 [part: BM 96.5.19.46].

Mabuya striata; Parker 1942: 85.

Distribution. Southeastern Sudan, Ethiopia and Somalia to northeastern regions of South Africa.

37 *Euprepes margaritifer* Peters 1854, formerly believed to represent a southern race of *Mabuya quinquetaeniata*, is now considered a distinct species (Broadley & Bauer 1998).
Mabuya varia (W. Peters 1867)

Euprepes (Euprepis) varius W. Peters 1867: 20, Tete, Mozambique.

Field notes. Though found at an altitude of about 1000 m in the semi-desert surroundings of the Awash National Park, this species extends to 2700 m or more in open grassland on the Ethiopian plateau and is commonly seen at such elevations in the vicinity of Addis Ababa.

Distribution. Southeastern Sudan, Ethiopia and Somalia to northeastern regions of South Africa, thence westwards to Namibia and southern Angola.

Mabuya wingatii (Werner 1907)

M(abuia) wingatii Werner 1907: 1848, Khor Attar, Sudan.

Field notes. This species (Fig. 14) is common and easily observed at Bahar Dar, where it was found to be active by day on open ground. Though usually taking cover amongst vegetation when disturbed, animals in swampy areas were seen to jump into water and swim to safety if pursued.

Distribution. Known only from southeastern Sudan and western Ethiopia.
Genus *Panaspis* Cope 1868

Panaspis tancredii (Boulenger 1909)

Ablepharus tancredii **BOULENGER** 1909: 193, Dabarif (= Dabark or Debarek, 13°08’N 37°55’E), Ethiopia [holotype: MSNG 27780].

Distribution. Known with certainty only from the type locality 38.

Panaspis wahlbergii (A. Smith 1849)

Distribution. Ethiopia and Somalia to eastern regions of South Africa.

Family Varanidae

Genus *Varanus* Merrem 1820

Varanus albicularis (Daudin 1802)

38 According to Fuhn (1964), *Ablepharus anselli* FitzSimons 1955 (type locality: Kasempa, Zambia) is conspecific and Broadley (1989) has added *A. seydeli* Witte 1933 (type locality: Elisabethville = Lubumbashi, Congo Kinshasa) and *A. moeruensis* Witte 1933 (type locality: Kilwa, Lake Mweru, Congo Kinshasa) to the synonymy, but it is difficult to find such conclusions convincing. Huge distances separate Ethiopia from these SE African localities and no geographically intermediate populations are known to exist.

Additional material. Harar [NEUMANN 1905: 393 (Varanus ocellatus); no specimen preserved]. 18 km (N of) Camp Awash [LANZA 1972: 173 (Varanus exanthematicus); sight record, no specimen collected]. “Ogadeen” (= Ogaden region) [BOETTGER 1893a: 115; specimen not found in SMF, so presumed lost]. Gouf [BOULENGER 1895a: 534 (Varanus ocellatus); ANSP 4655]. Between Lake Stephanie and Lake Rudolf (Donaldson Smith, 4.VII.1895) [BOULENGER 1896b: 215 (Varanus ocellatus); ANSP 4654?]

Distribution. Eastern and southern Ethiopia, Djibouti and Somalia, southwards to South Africa, Botswana and Namibia.

Varanus niloticus (Linnaeus 1766)

Lacerta nilotica LINNAEUS 1766: 369, Egypt.

Additional material. Gendoa River [LOVERIDGE 1936a: 59; FMNH 12737]. “Gadschinbocha, Hauasch-Tal” (= Awash Valley, perhaps at Caccinua) [TORNIER 1905: 373; ZMB 19771]. Awash River, near Awash Falls [LANZA 1972: 174; sight record, no specimen collected]. Murle [SCORTECCI 1943: 298; MSNM-Re2335, 2337, 2345]. Sagen (River) [SCORTECCI 1943: 298; MSNM-Re2336].

Field notes. This species has been observed, though not collected, on the Dawa River at Mandera and also near Debre Zeit on the Ethiopian plateau, where it occurs at the unusually high elevation of 1950 m.

Distribution. Senegal to Eritrea, Ethiopia and Somalia, northwards along the Nile Valley to Egypt and southwards to South Africa. Almost invariably associated with rivers, lakes and similar sources of permanent water.

KEY TO THE LIZARDS RECORDED FROM ETHIOPIA

The following synopsis has been found to deliver satisfactory determinations of most Ethiopian lizards in most instances, particularly those represented by an adequate series of adult specimens in good condition. When difficulties arise, they

39 The name *ocellatus* Heyden 1827 is currently considered to be a junior synonym of *Varanus exanthematicus* (Bosc 1792), a species believed to extend from Senegal to Eritrea. PARKER’S (1942) records of *V. ocellatus* are referable to *V. albigularis* and it seems likely that this is true also of Ethiopian material reported under the same name by other authors.
frequently relate to the genus *Hemidactylus*, which includes many taxa still imperfectly defined on the basis of rather limited samples. If only immature, female or damaged specimens are available, it may sometimes be almost impossible to arrive at a satisfactory identification of the species. It must also be recognised that, as a general rule, any conclusion reached through use of a key should be regarded as tentative, until at least a detailed description of the species in question has been consulted or reliably identified comparative material has been examined.

1. Top of the head with numerous small, irregularly arranged scales or granules 4
 — Top of the head with large, more or less symmetrically arranged shields 2
2. No femoral pores; dorsal and ventral scales not strongly differentiated and usually highly polished ... Scincidae 8
 — Femoral pores present; dorsal and ventral scales strongly differentiated, the former either much smaller than those of the belly or separated from them by a lateral fold... 3
3. Dorsal scales large and keeled, separated from the ventrals by a more or less distinct lateral fold... Cordylidae 26
 — Dorsal scales (or at least those adjacent to the ventrals) always small and sometimes granular, not separated from the ventrals by a lateral fold Lacertidae 28
4. Body laterally compressed; digits bound into opposable bundles for grasping; tail prehensile in most species ... Chamaeleonidae 43
 — Body round or dorsoventrally flattened; digits not in opposable bundles; tail not prehensile ... 5
5. Eyelids incapable of closing the eye, which is protected instead by a transparent spectacle; digits often expanded to form adhesive pads Gekkonidae (part) 52
 — Eyelids movable and capable of completely closing the eye; digits not specialised to form adhesive pads ... 6
6. Head long and narrow; tongue extremely long, slender and deeply forked; tail with a distinct dorsal keel; adults 100 cm or more in total length, hatchlings at least 23 cm ... Varanidae 87
 — Head short and broad; tongue short, broad and covered with papillae; tail never keeled (though sometimes with a dorsal crest of discrete, lanceolate scales); adults not exceeding 40 cm in total length ... 7
7. Contracted pupil a vertical slit; dorsal lepidosis of juxtaposed granules; tail length conspicuously less than snout-vent length Gekkonidae (part) 51
 — Contracted pupil round; dorsal lepidosis of imbricate, usually carinate and often spinose scales; tail length in most species greater than snout-vent length Agamidae 88
8. Nostril well separated from the rostral shield ... 10
 — Nostril situated between nasal and rostral shields ... Chalcides 9
9. Mid-body scale rows 20-26; anterior region of the back, behind the shoulders, bearing a darker and/or more heavily ocellated longitudinal band that covers the entire width of just two mid-dorsal scale rows (sometimes this marking is so faint it is difficult to detect, alternatively it may be subdivided into three parallel stripes) ... Chalcides ragazzii
 — Mid-body scale rows 24-34; anterior region of the back not patterned differently from the rest of the dorsum, or with a darker and/or more heavily ocellated longitudinal band that covers the entire width of four mid-dorsal scale rows (and may be subdivided into three parallel stripes) .. Chalcides ocellatus 11
10. Eyelids fully movable and capable of completely closing the eye 12
 — Eyelids fused, immovable, the eye protected by a single transparent scale Panaspis 11
11. Frontoparietal shields fused; mid-body scale rows 24-26 Panaspis wahlbergii
 — Frontoparietal shields paired; mid-body scale rows 22 Panaspis tancredii
Lower eyelid with a large transparent disc; dorsal scales usually keeled; limbs well developed .. **Mabuya** 17
— Lower eyelid scaly or with only a small transparent disc; dorsal scales smooth; limbs reduced .. **Lygosoma** 13
13 Nostril surrounded by two nasal scales and a separate supranasal........................... .. **Lygosoma afrum** 14
— Nostril surrounded by only two scales or pierced within a single scale 14
14 Nostril surrounded by two scales, the supranasal and anterior nasal being fused **Lygosoma vinciguerrae** 15
15 Four upper labial scales anterior to the subocular **Lygosoma paedomorinatum** 16
— Three upper labial scales anterior to the subocular .. 16
16 Fifth toe clearly shorter than the second and having only 5-6 subdigital lamellae ... **Lygosoma sundevallii** 17
— Fifth toe at least as long as the second and having 7-9 subdigital lamellae **Lygosoma somalicum** 18
Frontoparietal shields fused; mid-body scale rows 30-34, the dorsals tricarinate; a dark lateral band from eye to groin with a pale dorsolateral stripe above and pale lateral stripe beneath .. **Mabuya isselii** 19
— Frontoparietal shields paired .. 19
18 Subocular scale excluded from the edge of the lip or having a lower margin that is clearly less than half the width of its upper margin .. **Mabuya hildebrandtii** 20
— Subocular scale bordering the lip and having a lower margin that is clearly more than half the width of its upper margin ... 20
19 Auricular lobes conspicuously long and pointed; subocular scale reaches the edge of the lip; adult males uniform pale brown above with a series of large dark blotches in a longitudinal row behind the ear, females and juveniles with both vertebral and dorsolateral pale lines .. **Mabuya striata** 21
— Auricular lobes relatively poorly developed and more rounded; subocular scale usually excluded from the edge of the lip; sexes similar; having a dark lateral band from eye to groin and broad dorsolateral pale stripes, but no pale vertebral or lateral lines ... 21
20 Lower margin of the subocular clearly shorter than its upper margin; a dark lateral band from eye to groin bordered by conspicuous pale dorsolateral and lateral stripes ... **Mabuya maculilabris** 22
— Upper and lower margins of the subocular more or less equal in length **Mabuya varia** 23
21 Mid-body scale rows 22-28; dorsal scales smooth .. **Mabuya megalura** 24
— Mid-body scale rows usually 28 or more (rarely 26); dorsal scales keeled **Mabuya quinquetaeniata** 25
22 Dorsal scales with 5-8 keels; mid-body scale rows 30-38 (but rarely more than 34) ... **Mabuya maculilabris** 25
— Dorsal scales with 2-3 (rarely 4 or 5) keels ... 25
23 A very prominent pale line with distinct dark margins running from beneath the eye, along the lower flank to the groin, but no pale vertebral line in either sex; mid-body scale rows 30-32; dorsal scales with 3 distinct keels **Mabuya wingatii** (Fig. 14) 24
— No prominent pale line along the length of the lower flank, except in some females where it is accompanied by a conspicuous pale vertebral line .. **Mabuya quinquetaeniata** 25
24 Mid-body scale rows 32-46 (most commonly 34-40); dorsal scales with 3 (rarely 4 or 5) distinct keels; adult males uniform pale brown above with a series of large dark blotches in a longitudinal row behind the ear; females and juveniles with distinct pale vertebral, dorsolateral and lateral lines on a dark background ... **Mabuya quinquetaeniata** 25
— Not having the above combination of characters .. 25
25 Scales on sole of foot usually terminating in conspicuous spines; subdigital lamellae usually with a strong median keel and sometimes weak lateral keels; mid-body scale rows 30-35; dorsal scales usually with 2 (rarely 3) strong keels;
supranasals in short contact or separated; dark flanks not sharply demarcated ventrally ... *Mabuya brevicollis*

— Scales on sole of foot not spinose; subdigital lamellae smooth or only weakly carinate; mid-body scale rows 26-32; dorsal scales with 3 (rarely 4) keels; supranasals generally in broad contact; dark lateral band strongly demarcated from the pale lower flanks ... *Mabuya planifrons*

26 Nostril pierced in a single nasal scale; three pairs of large shields behind the frontal (i.e. one pair of frontoparietals and two pairs of parietals) *Cordylus rivae*

— Nostril pierced between two nasal scales and the first labial; only two pairs of large shields behind the frontal (i.e. one pair of frontoparietals and one pair of parietals) ... *Gerrhosaurus*

27 Ventral plates in 8 longitudinal rows *Gerrhosaurus flavigularis*

— Ventral plates in 10 longitudinal rows *Gerrhosaurus major*

28 Nostril in contact with or very close to the first upper labial ... *Heliobolus spekii*

— Nostril well separated from the first upper labial by a lower nasal scale *Heliobolus neumanni*

29 Supraoculars in contact with the frontal and frontoparietal; upper head shields smooth ... *Pseuderemias*

— Supraoculars separated from the frontal and frontoparietal by a row of small granular scales; upper head shields rarely smooth, usually with at least some surface sculpture ... *Pseuderemias brenneri*

30 Distal subdigital lamellae tricarinate; lower nasal scale in broad contact with the rostral; dorsal scales smooth or very feebly keeled; posterior subcaudals smooth; ventrals in 8 longitudinal series *Mesalina martini*

— Distal subdigital lamellae bicarinate; lower nasal scale making no contact with the rostral; dorsal scales very distinctly keeled; posterior subcaudals keeled; ventrals usually in 6 longitudinal series .. *Heliobolus neumanni*

31 Distal subdigital lamellae bicarinate; three (very rarely two) nasal scales; snout (measured from the anterior margin of the first supraciliary) usually shorter than the maximum distance between the anterior margins of the first supraciliaries and with no obvious constriction when viewed from above *Heliobolus spekii*

— Distal subdigital lamellae unicarinate; usually four (more rarely three) nasal scales; snout usually longer than the maximum distance between the anterior margins of the first supraciliaries and, when viewed from above, clearly attenuated anterior to a marked constriction at the level of the prefrontal-frontonasal sutures ... *Pseuderemias*

32 Upper head shields striated; dorsal scales distinctly tricarinate ... *Pseuderemias striata*

— Upper head shields rarely smooth, usually more or less rugose but never striated; dorsal scales smooth or only feebly unicarinate ... *Pseuderemias smithi*

33 Subocular scale excluded from the lip; 17-24 femoral pores on each thigh; the back with longitudinal dark bands, all or most of which incorporate rows of distinct pale spots ... *Pseuderemias brenneri*

— Subocular scale usually entering the lip; 13-17 femoral pores on each thigh; longitudinal dark bands on the back having little or no trace of pale spots *Pseuderemias striata*

34 Subocular scale excluded from the lip; posterior subcaudals strongly keeled; ventrals in 8 longitudinal series of large rectangular plates, with evidence of an additional row of smaller and more rounded scales on either side; on the back five distinct dark bands incorporating discrete rows of pale spots ... *Pseuderemias smithi*

— Subocular scale entering the lip; posterior subcaudals smooth or only weakly keeled; ventrals usually in 6 (rarely 8) longitudinal series, with evidence of an additional row of smaller and more rounded scales on either side; on the back a mid-dorsal dark stripe (more rarely three), with two dark bands on either side that are frequently obscured, fragmentated or reduced to a reticulum by pale and often coalescent pale blotches ... *Pseuderemias mucronata*
One postnasal scale; several rows of clearly enlarged scales along the dorsal midline ... Philochortus

— Two postnasal scales, one above the other; scales along the dorsal midline not obviously enlarged .. Latastia

Centre of pectoral region covered by regularly arranged scales similar to those of the belly; back immaculate or with 3-5 more or less distinct longitudinal dark stripes; flanks rarely unmarked, usually dark with 2-3 longitudinal rows of vivid white spots; 8-12 femoral pores on each thigh Latastia boscai

— Centre of pectoral region usually with a group of small, irregular scales that interrupt the linear arrangement of the ventral plates ..

Ground colour of the back often distinctly reddish with darker markings frequently feeble or absent; 2-3 rows of obvious blue spots on each flank and similar spots sometimes present also on the back; 6-11 femoral pores on each thigh; in Ethiopia known only from the southeastern lowlands Latastia caeruleopunctata

— Ground colour of the back not conspicuously reddish and dark markings usually more or less distinct; blue spots absent or confined to a single row on each flank

4-7 femoral pores on each thigh; dark markings on the back well defined, consisting of a vertebral line that usually extends unbroken from nape to sacral region and is accompanied by three longitudinal rows of dark blotches on either side (though these may sometimes fuse to form longitudinal lines, transverse bars or a reticular pattern); in Ethiopia apparently confined to the northeastern lowlands ... Latastia doriai

— 7-14 femoral pores on each thigh; dark markings on the back tending to be more weakly defined, a continuous vertebral line often absent or confined to the anterior region of the back, with accompanying spots and blotches either much reduced or arranged in transverse lines or a reticular pattern rather than longitudinally orientated; widespread in Ethiopia Latastia longicaudata

Frontal shield usually separated from the supraoculars by a more or less complete row of small granular scales; dorsal scales keeled, in 22-28 rows at mid-body; 6-8 enlarged scales between the hindlimbs; dorsum with five longitudinal pale lines, the median bifurcating on the nape Philochortus hardeggeri

— Frontal shield usually in full contact with the supraoculars and not separated by small granular scales; dorsal scales smooth or keeled, in 28-46 rows at mid-body; 10-16 enlarged scales between the hindlimbs ..

Dorsum with five longitudinal pale lines, the median bifurcating on the nape; dorsal scales smooth or weakly keeled; parietal shields most commonly completely separated through contact between the interparietal and occipital Philochortus phillipsii

— Dorsum with six longitudinal pale lines, the median two bifurcating on the nape

Parietal shields in contact, the interparietal either absent or too small to reach the occipital; dorsal scales usually smooth Philochortus spinalis

— Parietal shields completely separated through contact between the interparietal and occipital ..

Dorsal scales distinctly keeled, in 35-40 rows at mid-body; 14-18 femoral pores on each thigh ... Philochortus intermedius

— Dorsal scales very weakly keeled, in 30-32 rows at mid-body; 10-14 femoral pores on each thigh .. Philochortus rudolfensis

Claws simple; scales on soles of feet smooth; tail long and strongly prehensile, its length frequently equal to or greater than the distance from snout to vent

— Claws bicuspid, having a small secondary point directed ventrally; scales on soles of feet spinose; tail only weakly prehensile, much shorter than the distance from snout to vent ... Rieppeleon kersteni

A single row of enlarged scales forming a well defined gular crest in the midline of the throat ... Chamaeleo

— Gular crest absent (though there may be a pair of ridges covered by unmodified scales similar to those on the rest of the throat) Chamaeleo affinis (Fig. 6)
Lizards of Ethiopia

45 Gular crest formed by a row of more or less prominent conical tubercles 47
— Gular crest formed by a row of very long, laterally compressed, blade-like scales; known only from the Bale Mountains of Ethiopia

46 Snout with a pair of distinct rostral projections that, in the male, become forwardly-directed annulated horns Chamaeleo balebicornutus (Fig. 8)
— Snout devoid of rostral projections ... Chamaeleo harennae

47 Distinct gular and ventral crests formed from a continuous row of enlarged, conical tubercles extending from chin to vent; casque no more than moderately raised posteriorly; parietal crest no more than moderately developed, sometimes weak or absent .. 48
— Often no distinct ventral crest formed from enlarged tubercles (though there is usually a pale line along the centre of the chest and abdomen); casque much elevated posteriorly; parietal crest very well developed ... Chamaeleo africanus (including calcaricarens) (Fig. 7)

48 Scalation strongly heterogeneous, the body scales including one or two lateral rows of enlarged tubercles .. Chamaeleo bitaeniatus
— Scalation homogeneous, all body scales of more or less equal size .. 49

49 Occipital dermal lobes absent; parietal crest more or less continuous with the dorsal crest and not separated by a deep occipital groove; males without tarsal spurs .. 50
— Occipital dermal lobes present; parietal crest not continuous with the dorsal crest, but distinctly separated by a deep occipital groove; males often with tarsal spurs

50 Occipital lobes weakly developed and not movable Chamaeleo gracilis
— Occipital lobes developed into pronounced and freely movable flaps .. Chamaeleo dilepis (including ruspolii)

51 Dorsal lepidosis homogeneous, all granules being more or less equal in size; digits long, slender and compressed; four scales surrounding the base of each claw; males without preanal or femoral pores .. Holodactylus africanus
— Dorsal lepidosis heterogeneous, including both small and large granules; digits short, stout and cylindrical; three scales surrounding the base of each claw; males with an uninterrupted series of 23-28 preanofemoral pores Hemitheconyx taylori (Fig. 11)

52 Digits more or less strongly dilated and with well developed adhesive pads 53
— Digits slender, not strongly dilated, lacking well developed adhesive pads

53 Back covered with large imbricate scales Tropiocolotes somalicus
— Back covered with small juxtaposed granules, sometimes including an admixture of enlarged tubercles ... 54

54 Contracted pupil a vertical slit; digits with a conspicuous lateral fringe of pointed scales .. Stenodactylus sthenodactylus
— Contracted pupil rounded; digits with no lateral fringe .. 55

56 Nostril separated from the rostral shield ... Pristurus
— Nostril in contact with the rostral shield ...

57 Tail (especially in males) strongly compressed, with a dorsal crest of elongate, lanceolate scales that extends anteriorly beyond the level of the vent, at least as a row of enlarged scales; fold of upper eyelid usually weakly enlarged; maximum snout-vent length 40 mm .. Pristurus flavipunctatus
— Tail less strongly compressed, that of males (and some females) with a more feeble dorsal crest or row of enlarged scales that does not extend anteriorly beyond the level of the vent; fold of upper eyelid moderately enlarged; maximum snout-
vent length 32 mm .. *Pristurus rupestris*

58 Snout rounded, not depressed or beak-like; dorsal granules clearly smaller than the ventral scales; 18-23 lamellae beneath the fourth toe; claws longer than their basal scales .. *Pristurus crucifer*

— Snout pointed, depressed and almost beak-like; dorsal and ventral granules subequal in size; 16-19 lamellae beneath the fourth toe; claws equal to or shorter than their basal scales ... *Pristurus somalicus*

59 Digits furnished distally with two diverging, fan-shaped groups of scansors that surround and extend far beyond the claw .. *Pygodyactylus ragazzii*

— Scansors not in two fan-shaped distal groups surrounding or extending far beyond the claw .. *Homopholis fasciata*

60 Subdigital lamellae in two rows separated by a longitudinal groove *Tarentola annularis* (Fig. 12)

61 All fingers with small retractile claws (that of the thumb being particularly minute and inconspicuous); males with 2 preanal pores *Hemidactylus brookii*

— Claws present on only the third and fourth fingers, the rest terminating in a flat, nail-like scute; males with neither preanal nor femoral pores .. *Hemidactylus ruspolii*

62 First digit conspicuously reduced; free distal portion of the toes short and arising from the end of a strongly dilated discoid expansion; cloacal sacs absent in both sexes; contracted pupil round .. *Lygodactylus*

— First digit not conspicuously reduced; free distal portion of the toes long and arising angularly from within the digital expansion; cloacal sacs (opening through a pair of slits immediately behind the vent) present in both sexes; contracted pupil vertical .. *Hemidactylus*

63 Tail lacking any significant basal constriction, cylindrical or sometimes depressed and usually tapering gradually throughout its length .. *Hemidactylus*

— Tail more or less conspicuously constricted at its base, depressed and often swollen or root-shaped .. *Hemidactylus curlei*

64 Back covered with granules among which are rows of large, trihedral and strongly keeled tubercles .. *Hemidactylus curlei*

— Back covered with flat, subcircular scales or by a mixture of granules and tubercles, the latter only moderately large and either smooth or weakly keeled *Hemidactylus tropidolepis*

65 Upper surface of snout covered with large, strongly keeled tubercles; males with 28-36 preanofemoral pores in a continuous series; regenerated tail grossly swollen and often leaf-shaped; maximum snout-vent length 50 mm *Hemidactylus laticaudatus*

— Upper surface of snout covered with small granules (only rarely including an admixture of keeled tubercles); males with a series of 20-46 preanofemoral pores that is interrupted mid-ventrally; regenerated tail no more than moderately swollen and root-shaped; maximum snout-vent length about 70 mm *Hemidactylus curlei*

66 Dorsal lepidosis homogeneous, consisting of flat, subcircular, weakly imbricate scales; males with 4 preanal pores ... *Hemidactylus tropidolepis*

— Dorsal lepidosis heterogeneous, consisting of small granules and larger, rounded, flat or faintly keeled tubercles; males with a series of 12-18 preanofemoral pores that is interrupted mid-ventrally .. *Hemidactylus curlei*

67 Dorsal lepidosis of juxtaposed or weakly imbricating granules or tubercles *Hemidactylus curlei*

— Dorsal lepidosis of strongly imbricating scales .. *Hemidactylus laticaudatus*

68 Scales on the back homogeneous, all of more or less equal size and smooth *Hemidactylus laticaudatus*

— Scales on the back heterogeneous, the larger ones being more or less strongly keeled .. *Hemidactylus laticaudatus*

69 Dominant scales on the back large and strongly keeled, with much smaller carinate scales packed into the narrow spaces between them; males with 6-10 preanal pores .. *Hemidactylus tropidolepis*

— Dominant scales on the back small and smooth, with larger keeled scales widely scattered amongst them; males with 6-20 preanal or preanofemoral pores
Hemidactylus squamulatus

Midbody scale rows 59-102; scales on the occiput and nape different from those on the back, granular and juxtaposed.

Hemidactylus ophiolepoides

- Midbody scale rows 50-59; scales on the occiput and nape similar to those on the back, smooth and imbricate.

Hemidactylus isolepis

Males with 8 preanal pores.

Hemidactylus albopunctatus

- Back with small uniform granules, sometimes accompanied by weakly enlarged tubercles that are no more than feebly keeled.

Hemidactylus bavazzanoi

- No vivid pattern of dark transverse bands (or if such markings are present then 7-10 lamellae beneath the first toe; 9-14 lamellae beneath the fourth toe and maximum snout-vent length about 70 mm).

Hemidactylus brookii

- 5-10 lamellae beneath the first toe; 8-14 lamellae beneath the fourth toe; males with 2-13 preanal pores but no femoral pores; proximal region of the tail with or without a ventrolateral row of enlarged tubercles.

Hemidactylus barodanus

Proximal region of the tail strongly depressed, its outermost row of tubercles forming a distinct ventrolateral series.

Hemidactylus arnoldi

- No enlarged scale on the sole of the foot; no prominent dorsal pattern, except in some juveniles which have transverse bars that are widest at their lateral margins.

Hemidactylus robustus

Digits feebly expanded; claws long and slender; usually no enlarged scales on the underside of the unregenerated tail; supranasal scales usually in contact; 5-8 lamellae beneath the first toe; 8-11 lamellae beneath the fourth toe; males with 2-6 (most commonly 4) preanal pores.

Hemidactylus macropholis

Digits more strongly expanded; claws short and stout; a median series of transversely enlarged scales usually present on the underside of the unregenerated tail; supranasals often separated by one or more smaller scales; males with 4-9 (most commonly 6) preanal pores.

Hemidactylus robustus

7-10 upper labials; at midbody 5-9 ventral scales in a longitudinal series equivalent in length to the horizontal diameter of the eye.
— 10-13 upper labials; at midbody 9-14 ventral scales in a longitudinal series equivalent in length to the horizontal diameter of the eye Hemidactylus yerburi

Dorsal lepidosis more or less homogeneous, consisting of small granular scales with or without a few that are only very slightly enlarged; males lacking both preanal and femoral pores Hemidactylus somalicus

— Dorsal lepidosis heterogeneous, including both small granules and some clearly enlarged tubercles; males with preanal or preanofemoral pores

82 Subdigital lamellae on the fifth toe often failing to reach the sole of the foot, its proximal portion with only small scales or granules; 5-6 lamellae beneath the first toe; males with more than 40 preanofemoral pores; snout-vent length of adults up to 94 mm Hemidactylus platycephalus

— Subdigital lamellae of all toes reaching the sole of the foot; 6-7 lamellae beneath the first toe; males with fewer than 40 preanofemoral pores; snout-vent length of adults not exceeding 70 mm

83 Male (syntype) with 8 preanal pores Hemidactylus jubensis

— Males with 24-32 preanofemoral pores

40 Hemidactylus jubensis is very poorly known. Its appearance in the same couplet as H. smithi owes much to the influence of Parker (1932a, 1942) and Loveridge (1947) and could be highly misleading, particularly if Lanza (1983, 1990) is right to suspect that the former taxon might be conspecific with H. barodanus. Both Parker and Loveridge clearly relied heavily upon Boulenger’s (1895b) original account of H. jubensis and subsequent re-examination of the female syntype in London (BM 95.3.5.1/1946.8.23.66), which is now considered to be an example of H. smithi. Although Loveridge’s (1947: 165) description included some supplementary information (e.g. “males with 6-10 preanal pores forming an uninterrupted series”), this was evidently derived from some unspecified material of dubious identity and is consequently unacceptable. The only specimen that can be used to define H. jubensis is the male syntype in Genoa (MSNG 28846) and this has not been seen by the present authors.

82 Mental shield deeply fissured posteriorly, the fissures sometimes uniting to excise a single large and entirely separate postmental scale; nostril in contact with the rostral shield

84 Mental shield entire; nostril narrowly separated from the rostral shield

85 Dark gular chevrons usually uniting at their apices to surround a distinct pale postmental spot; head prominently patterned and often contrasting strongly with the back; subcaudal scutes lacking a median series of dusky marks Lygodactylus keniensis

— Dark gular chevrons not uniting to surround a distinct pale spot; head not prominently patterned and generally rather similar to the back; subcaudal scutes with a conspicuous median series of dusky marks

86 Throat with three longitudinal dark lines, weakly divergent though often conjoined anteriorly

— Throat immaculate

87 Nostril only slightly closer to the eye than to the snout tip; snout shallow in profile, gradually sloping towards the tip; tail long, usually more than 1½ times the snout-vent length Varanus niloticus

— Nostril much closer to the eye than to the snout tip; snout deep, its upper surface strongly angled to produce a distinctly aquiline profile; tail short, less than 1½ times the snout-vent length Varanus albigularis

88 Femoral pores present; tail with regular whorls of very large spinose tubercles; all dorsal scales smooth

— Femoral pores absent; tail without regular whorls of very large spinose tubercles; at least some dorsal scales keeled

90 Basal portion of the tail longer than broad and merging gradually into the termi-
nal filament, its marginal spines not conspicuously larger than those on its upper surface; dorsal scalation strongly heterogeneous, with larger and more spinose scales clearly differentiated from the rest. *Xenagama batillifera* (Fig. 4)

— Basal portion of the tail broader than long and abruptly differentiated from the terminal filament, its marginal spines conspicuously large; dorsal scalation only weakly heterogeneous. *Xenagama taylori* (Fig. 5)

91 Occipital scale (which bears the pineal organ) usually clearly larger than adjoining scales on the back; no dorsolateral skin folds. *Agama*

— Occipital scale not larger than adjoining scales on the back of the head; a distinct dorsolateral skin fold extending along each side of the back from neck to groin. *Acanthocercus*

92 Flanks covered with uniformly small, smooth scales. *Acanthocercus annectans*

— Flanks with some conspicuously enlarged, keeled and spinose scales in addition to the smaller ones. *Agama*

93 Region of the back between the dorsolateral folds including at least some clearly enlarged, keeled and spinose scales in addition to numerous smaller ones; no conspicuous pale vertebral stripe (though sometimes a diffuse pale band, lacking sharp lateral margins). *Acanthocercus atricollis*

— Region of the back between the dorsolateral folds with only small, more or less uniform scales; always a prominent pale vertebral stripe, clearly defined by sharp lateral margins. *Acanthocercus cyanogaster*

94 Scales on the anterior throat more or less distinctly and sharply keeled; mid-dorsal scales of the back not sharply differentiated from those of the tail; nostril directed posteriorly. *Acanthocercus phillipsii*

— Scales on the anterior throat not distinctly and sharply keeled; at the base of the tail, a more or less abrupt transition between the smaller scales of the back and the larger caudal scutes; nostril directed laterally. *Acanthocercus zonurus*

95 Mid-dorsal lepidosis of the back strongly heterogeneous, typically with longitudinal rows of conspicuously enlarged, strongly keeled and spinose scales distributed amongst numerous smaller ones; each tail segment composed of 3-4 rings of scales. *Acanthocercus phillipsii*

— Mid-dorsal lepidosis of the back less strongly heterogeneous, the scales generally more similar in size, all rather weakly keeled and none conspicuously spinose; each tail segment composed of only 2 annuli. *Acanthocercus guentherpetersi*

96 Enlarged, keeled scales on the flanks in distinct transverse rows, most of which are closely compacted into a single restricted field; scales on the posterodorsal face of the thigh essentially homogeneous, all of moderate size, keeled, spinose and regularly arranged; caudal scale rows (at a distance behind the vent equivalent to the maximum breadth of the tail) 16-21 (most commonly 18-19). *Acanthocercus philippisi*

— Enlarged, keeled scales on the flanks widely dispersed or in weak and isolated transverse rows; scales on the posterodorsal face of the thigh clearly heterogeneous, with enlarged, keeled and spinose scales irregularly arranged and intermingled with numerous smaller ones; caudal scale rows 20-29 (most commonly 22-26). *Acanthocercus gueitnerpetersi*

97 Dorsal scales strongly heterogeneous, the back being scattered with large thorn-like scutes, each usually surrounded by a rosette of smaller spines; head massive, with an abbreviated snout and much enlarged orbits elevated high on the upper surface. *Agama robecchii* (Fig. 3)

— Dorsal scales more or less homogeneous, none conspicuously larger than the rest; head shape unremarkable. *Agama persimilis*

98 A distinct longitudinal crest of enlarged, lanceolate scales on the nape. *Agama persimilis*

— No nuchal crest. *Agama persimilis*

99 Tympanum fully exposed, not encroached upon by the surrounding clusters of elongate spines; snout-vent length of adult males not more than 54 mm, of females not more than 64 mm. *Agama persimilis*
— Tympanum partly occluded by encroaching clusters of elongate spines; snout-vent length of adult males at least 58 mm, of females at least 76 mm *Agama rueppelli*

100 Nasal shield rounded; in Ethiopia known only from arid northeastern regions of the country ... *Agama spinosa*

— Nasal shield pyriform, prolonged into a distinct point anteriorly 101

101 Nostril clearly displaced beneath the canthus rostralis; first canthal scale behind the nasal separated from the rostral by just 2 (rarely 1 or 3) markedly elongate scutes; adult male with a patch of intense blue-black pigmentation on the posterior region of the throat; in Ethiopia known only from localities west of the Rift Valley ... *Agama doriae* (Figs 1-2)

— Nostril situated on the canthus rostralis; first canthal scale behind the nasal separated from the rostral by 3-4 (rarely 2 or 5) scutes; adult male lacking a prominent dark patch on the posterior region of the throat *Agama agama*

GAZETTEER OF COLLECTION LOCALITIES

Much of the information incorporated into the following gazetteer has been derived from published itineraries and route-maps of expeditions, or from details recorded on collectors’ labels, but the main references for geographical co-ordinates are the 1:1000000 maps, series GSGS 4646, issued by the British War Office in the years 1946-1947. Considerably more accurate maps have since been produced, but the former were the best available during the period 1968-1977, when many recent collections of Ethiopian lizards were obtained and gazetteers for this and other groups of vertebrates first compiled. It therefore needs to be understood that, while these co-ordinates have considerable validity in relation to one another, in abstraction the accuracy of individual figures may be more limited. It is perhaps hardly necessary to add that any attempt to “improve” some of the easier co-ordinates (such as those for major towns), while leaving the rest unchanged, will have an overall effect which is the direct opposite of that intended – it will make a slightly unsatisfactory situation vastly more chaotic!

Locality

Co-ordinates

Abassi-See (Erlanger & Neumann col.) = Lake Awasa
or, perhaps more correctly, Sciallo Swamp
ca 07°05’N 38°33’E

Abaya Lake, N (end) of
06°37’N 37°58’E

Abaya Lake, W (side) of
06°15’N 37°50’E

Abaya Lake, E of
06°15’N 38°00’E

Abaya Lake, SW (corner) of
06°04’N 37°40’E

Abaya Lake, SE corner of
06°03’N 37°50’E

Abaya Lake, S (shore) of
06°02’N 37°45’E

Abbai (E. Degen col.) = Great Abbai River at either 10°06’N 38°17’E
or 09°52’N 37°49’E

Abdallah (region)
at ca 06°10’N 43°20’E

Abera
06°27’N 38°30’E

Abiu, E of
08°11’N 35°22’E

Abu el Kassim (Abulcassim) Mt
07°41’N 40°29’E

Adamitullu
07°51’N 38°42’E
<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adda (Addas)</td>
<td>see Debre Zeit</td>
</tr>
<tr>
<td>Addis Ababa (Adis Abeba)</td>
<td>09°02'N 38°45'E</td>
</tr>
<tr>
<td>Ado</td>
<td>07°20'N 45°15'E</td>
</tr>
<tr>
<td>Akaki River, at confluence with Awash River</td>
<td>08°37'N 38°45'E</td>
</tr>
<tr>
<td>Akobo River, in Jambo region</td>
<td>07°23'N 34°00'E</td>
</tr>
<tr>
<td>Alaideghi Plain</td>
<td>ca 09°20'N 40°20'E</td>
</tr>
<tr>
<td>Alemaya (Haramaja) Lake</td>
<td>09°24'N 42°01'E</td>
</tr>
<tr>
<td>Alio Amba</td>
<td>09°32'N 39°50'E</td>
</tr>
<tr>
<td>Allata</td>
<td>06°33'N 38°28'E</td>
</tr>
<tr>
<td>Amarr</td>
<td>ca 05°20'N 38°00'E</td>
</tr>
<tr>
<td>Ambo</td>
<td>08°57'N 37°57'E</td>
</tr>
<tr>
<td>Ambo, 30 km NW of Dessie</td>
<td>11°16'N 39°34'E</td>
</tr>
<tr>
<td>Amhara region</td>
<td>? at ca 13°10'N 37°30'E</td>
</tr>
<tr>
<td>Amibarra</td>
<td>09°24'N 40°11'E</td>
</tr>
<tr>
<td>Anderatscha</td>
<td>07°12'N 36°27'E</td>
</tr>
<tr>
<td>Angareb River</td>
<td>at ca 13°10'N 37°15'E</td>
</tr>
<tr>
<td>Ankober, 8 km NW of</td>
<td>09°38'N 39°42'E</td>
</tr>
<tr>
<td>Arba Minch</td>
<td>06°05'N 37°38'E</td>
</tr>
<tr>
<td>Arero</td>
<td>04°44'N 38°50'E</td>
</tr>
<tr>
<td>Aroweina (Arruena)</td>
<td>10°32'N 42°41'E</td>
</tr>
<tr>
<td>Artu, Somalia</td>
<td>ca 10°46'N 42°55'E</td>
</tr>
<tr>
<td>Arussi Galla region (Erlanger & Neumann col.)</td>
<td>ca 07°50'N 41°10'E</td>
</tr>
<tr>
<td>Asaita</td>
<td>11°34'N 41°26'E</td>
</tr>
<tr>
<td>Asella</td>
<td>07°57'N 39°07'E</td>
</tr>
<tr>
<td>Ashangi (Lake)</td>
<td>12°35'N 39°30'E</td>
</tr>
<tr>
<td>Asile</td>
<td>04°52'N 36°41'E</td>
</tr>
<tr>
<td>Assabot (Mt)</td>
<td>09°15'N 40°50'E</td>
</tr>
<tr>
<td>Audo Mts</td>
<td>06°30'N 41°30'E</td>
</tr>
<tr>
<td>Awadi River</td>
<td>at ca 07°23'N 38°40'E</td>
</tr>
<tr>
<td>Aware (Auareh)</td>
<td>08°15'N 44°10'E</td>
</tr>
<tr>
<td>Aware Melca (Awharra Mullka)</td>
<td>09°08'N 39°58'E</td>
</tr>
<tr>
<td>Awasa Lake, E shore of</td>
<td>07°05'N 38°27'E</td>
</tr>
<tr>
<td>Awash Falls</td>
<td>08°50'N 40°01'E</td>
</tr>
<tr>
<td>Awash National Park</td>
<td>08°54'N 39°55'E</td>
</tr>
<tr>
<td>Awash National Park, entrance</td>
<td>08°55'N 40°00'E</td>
</tr>
<tr>
<td>Awash (Hauasch) Valley (Erlanger & Neumann col.)</td>
<td>at either 08°20'N 38°55'E</td>
</tr>
<tr>
<td></td>
<td>or 08°25'N 39°25'E</td>
</tr>
<tr>
<td></td>
<td>14°07'N 38°42'E</td>
</tr>
<tr>
<td>Axum</td>
<td>Backo, Wollega</td>
</tr>
<tr>
<td></td>
<td>09°07'N 37°03'E</td>
</tr>
<tr>
<td>Badattino</td>
<td>09°31'N 38°00'E</td>
</tr>
<tr>
<td>Badditu (region)</td>
<td>ca 05°55'N 37°55'E</td>
</tr>
<tr>
<td>Bahar Dar</td>
<td>11°35'N 37°25'E</td>
</tr>
<tr>
<td>Balci (Balchi)</td>
<td>08°54'N 39°16'E</td>
</tr>
<tr>
<td>Balinga Motscho (Erlanger & Neumann col.)</td>
<td>see Modjo (Moggio) Valley</td>
</tr>
<tr>
<td>Barssa (River) Valley</td>
<td>at ca 05°55'N 37°00'E</td>
</tr>
<tr>
<td>Batie</td>
<td>11°10'N 40°01'E</td>
</tr>
<tr>
<td>Bedelle</td>
<td>08°28'N 36°21'E</td>
</tr>
<tr>
<td>Beearso</td>
<td>06°53'N 42°18'E</td>
</tr>
<tr>
<td>Beletta Forest</td>
<td>07°33'N 36°34'E</td>
</tr>
<tr>
<td>Belfodio</td>
<td>10°34'N 34°49'E</td>
</tr>
</tbody>
</table>
Biccena, N of 10°29'N 38°16'E
Bikalal Hill 09°18'N 35°55'E
Bilo 06°45'N 38°25'E
Bisan River ca 05°20'N 37°50'E
Bishtoftu (Buchoftu) Lake 08°44'N 38°58'E
Bisidima River, E of Harar 09°15'N 42°12'E
Bitiju 09°33'N 40°45'E
Boholde 08°15'N 46°20'E
Bomu (Boma) 10°27'N 34°46'E
Bonga 07°15'N 36°15'E
Borana region (Donaldson Smith, 24.IV.1895) 05°25'N 37°56'E
Bourille ca 07°10'N 36°00'E
Budda, Gimirra region 09°30'N 45°32'E
Burao, Somalia 09°55'N 42°15'E
Bussa 07°40'N 36°45'E
Calam see Kelam
Camp Awash, 18 km N of ca 08°58'N 39°56'E
Caroarsa River mouth, 10 km E of 10°10'N 36°05'E
Caschei (or Turmi River) at ca 04°50'N 36°30'E
Chamo (Shamo) Lake, N of 05°59'N 37°42'E
Chamo Lake, NW corner of 05°57'N 37°40'E
Chamo Lake, NE (corner/shore) of 05°57'N 37°45'E
Chamo Lake, W of ca 05°50'N 37°30'E
Chamo Lake, E side of 05°55'N 37°44'E
Chamo Lake, S shore of ca 05°42'N 37°35'E
Choba (Cioba) ca 08°57'N 39°35'E
Ciaffedenza (Dscheffedenza, Ciadafena) 08°58'N 39°08'E
Coromma 05°30'N 38°05'E
Cullufu (Collufu) River, near Arba Minch ca 06°05'N 37°38'E
Dabahs (Daba-as) River at 10°02'N 42°23'E
Dabanac 06°54'N 43°02'E
Dabarif = Dabarik or Debarek 13°08'N 37°55'E
Dacata (Dakhato) River at 09°12'N 42°25'E
Dagah Bur (Daghabur) 08°13'N 43°30'E
Dagah Bur, E of 08°10'N 44°15'E
Danka River, near Dinshu 07°06'N 39°47'E
Daro River, Arussi (W. Thesiger col.) ca 07°45'N 40°25'E
Darsie River mouth 06°07'N 37°42'E
Debre Marcos (Debra Markos) 10°21'N 37°44'E
Debre Marcos, 10 km SW of 10°18'N 37°40'E
Debre Zeit 08°44'N 38°59'E
Deema 10°32'N 38°14'E
Dejem (Degen) 10°10'N 38°10'E
Derba (region) ca 09°30'N 38°40'E
Devark (Debarek, Dabarik) 13°08'N 37°55'E
Dida (Didda region) ca 07°50'N 39°30'E
Didessa River bridge 09°02'N 36°09'E
Didessa River mouth 10°05'N 35°38'E
Dime 06°18'N 36°16'E
Dinshu 07°06’N 39°47’E
Dinshu, 4 km W of 07°06’N 39°46’E
Dire Dawa (Dire Daua) 09°35’N 41°52’E
Dire Dawa, 30 km E of 09°45’N 42°05’E
Djaffa Mts 07°40’N 40°10’E
Djeldabal ca 10°13’N 42°30’E
Djem Djem Forest 09°00’N 38°12’E
Djildessa (Jildessa, Gildessa) 09°42’N 42°05’E
Dodola and Adaba, between 07°00’N 39°15’E
Dodola 06°58’N 39°11’E
Dodola, 15 km W of 06°57’N 39°02’E
Dodola, SE of 06°55’N 39°12’E
Dolo 04°11’N 42°05’E
Dungalbar (Dungulbar) 11°58’N 37°01’E
Eghi Mt 05°45’N 43°51’E
Egriariba 13°28’N 39°36’E
Ela Gura 05°01’N 38°42’E
Elba (River) ca 05°45’N 41°55’E
El Banno 04°51’N 37°23’E
El Dire 04°59’N 37°07’E
El Meti 04°58’N 37°08’E
Endessa ca 08°50’N 40°00’E
Entotto 09°02’N 38°45’E
Fantalle Mt 08°59’N 39°54’E
Fantalle Mt, N slope of 09°00’N 39°54’E
Fantalle Mt, NE slope of 08°59’N 39°55’E
Fantalle Mt, S side of 08°58’N 39°53’E
Farre 09°38’N 39°53’E
Felenguai 06°12’N 36°39’E
Filwoha (Filhoa, Filua) 09°00’N 39°58’E
Fincha River mouth 10°03’N 37°20’E
Finik ca 07°00’N 42°00’E
Fulla Valley, Somalia at ca 10°48’N 42°58’E
Furza 07°38’N 41°43’E
Gabba River bridge 08°17’N 36°05’E
Gadat 06°20’N 36°50’E
Gadshinbocha, Hauasch-Tal (Erlanger & Neumann col.) ca 09°03’N 40°13’E
Gajeem (Gadjir) ca 06°55’N 35°35’E
Gambela 08°15’N 34°35’E
Ganale River, upper region ca 05°45’N 39°30’E
Garamulata 09°16’N 41°44’E
Garano River, near Goba at 07°00’N 39°57’E
Gardulla 05°37’N 37°30’E
Gardulla Mt 05°35’N 37°24’E
Gaysay Mt 07°08’N 39°45’E
Gelago (Gellago) 04°10’N 40°02’E
Gelo (Ghilo) River and Akobo River, between (O. Neumann col.) ca 07°30’N 36°10’E
Gendoa River at ca 12°30’N 36°30’E
Gewani (Gowani) 10°10’N 40°38’E
Ghibie River bridge 08°14’N 37°35’E
Ghimbi 09°10'N 35°50'E
Ghimbi, 25 km N of 09°30'N 35°50'E
Giacorsa ca 04°10'N 39°50'E
Giari Bule 05°33'N 38°33'E
Gila (Ghilo) River, 63 km SW of Gambela 07°38'N 34°15'E
Gildessa (Jildessa, Jeldesa) 09°42'N 42°05'E
Goba 07°01'N 39°59'E
Godare 07°26'N 35°00'E
Godeb (Godab River) at ca 10°22'N 37°35'E
Godobuka 08°55'N 39°25'E
Gofa (region) ca 06°15'N 36°40'E
Gondar 12°37'N 37°27'E
Gondaraba 04°58'N 36°48'E
Gongabaino 04°57'N 36°42'E
Gore, 2 km W of 08°08'N 35°30'E
Gorgora region at ca 12°15'N 37°20'E
Goulf 06°50'N 41°25'E
Gubala Ginda 05°28'N 37°52'E
Guder River mouth 09°50'N 37°41'E
Gumboworen, Somalia ca 10°52'N 43°00'E
Harar (Harrar) 09°18'N 42°08'E
Harar, 20 km E of 09°12'N 42°15'E
Harar, 40 km E of 09°12'N 42°22'E
Hargeisa and Milmil, between (Donaldson Smith, 22.VII.1894) ca 08°00'N 44°00'E
Harra, Lake Zuai (E. Degen col.) 08°07'N 38°47'E
Harar see Harar
Hauacio ca 04°50'N 39°15'E
Hiressa ca 09°47'N 37°50'E
Hora Bishoftu see Bishoftu Lake
Ilala Sala 08°50'N 40°05'E
Javello 04°55'N 38°07'E
Jinka 05°49'N 36°39'E
Juba River, W of (Donaldson Smith, 7.III.1895) 03°52'N 40°30'E
Juba River, W of (Donaldson Smith, 19.III.1895) see Sancurar
Juba River, W of (Donaldson Smith, 21.III.1895) 03°57'N 40°00'E
Katcha 06°42'N 39°44'E
Katcha, 12 km N of 06°47'N 39°46'E
Kebre Mengist, 23 km SE of 05°48'N 39°12'E
Kebre Mengist, 75 km SE of 05°37'N 39°23'E
Kelam (Kalam, Calam) 04°50'N 36°05'E
Kereyu Lodge 08°50'N 40°02'E
Kofole (Kofele, Koffole), 10 km SE of 07°03'N 38°52'E
Kollu (Kolla region) at ca 09°15'N 38°10'E
Koscha (Coscia) region 06°45'N 36°35'E
Kude ca 11°00'N 37°00'E
Kudu Valley 08°56'N 40°02'E
Laku (E. Ruspoli col.) not located, but Ogaden region assumed
Lalibela 12°02'N 39°02'E
Langano Lake, W shore 07°37'N 38°42'E
Lasman, Somalia 10°44'N 42°51'E
<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lefe Isa</td>
<td>09°30’N 42°53’E</td>
</tr>
<tr>
<td>Let Marefia</td>
<td>09°39’N 39°46’E</td>
</tr>
<tr>
<td>Mabil</td>
<td>10°21’N 36°49’E</td>
</tr>
<tr>
<td>Mabil, 10 km W of</td>
<td>10°19’N 36°45’E</td>
</tr>
<tr>
<td>Magala Umberto I</td>
<td>04°18’N 42°03’E</td>
</tr>
<tr>
<td>Magascia (Mangascia) Plateau</td>
<td>ca 09°00’N 39°35’E</td>
</tr>
<tr>
<td>Mago National Park</td>
<td>05°30’N 36°30’E</td>
</tr>
<tr>
<td>Mahal Uonz</td>
<td>09°37’N 39°46’E</td>
</tr>
<tr>
<td>Maki (Meki) River</td>
<td>at 08°15’N 38°45’E</td>
</tr>
<tr>
<td>Malca Guba</td>
<td>04°47’N 39°22’E</td>
</tr>
<tr>
<td>Malca Guba, 20 km N of</td>
<td>04°55’N 39°38’E</td>
</tr>
<tr>
<td>Malca Murri</td>
<td>04°16’N 40°47’E</td>
</tr>
<tr>
<td>Mandera, Kenya</td>
<td>03°56’N 41°52’E</td>
</tr>
<tr>
<td>Mega</td>
<td>04°05’N 38°19’E</td>
</tr>
<tr>
<td>Mega, 10 km SE of</td>
<td>04°00’N 38°22’E</td>
</tr>
<tr>
<td>Menaballa (region)</td>
<td>08°58’N 39°01’E</td>
</tr>
<tr>
<td>Metahara</td>
<td>08°53’N 39°55’E</td>
</tr>
<tr>
<td>Metahara, 1-2 km W of</td>
<td>08°53’N 39°54’E</td>
</tr>
<tr>
<td>Metaker</td>
<td>08°47’N 42°11’E</td>
</tr>
<tr>
<td>Metememma</td>
<td>12°57’N 36°10’E</td>
</tr>
<tr>
<td>Mille River</td>
<td>at 11°24’N 40°46’E</td>
</tr>
<tr>
<td>Milmil</td>
<td>08°18’N 43°53’E</td>
</tr>
<tr>
<td>Modjo (Shoa)</td>
<td>08°36’N 39°07’E</td>
</tr>
<tr>
<td>Modjo (Valley), Ennia Galla region (Erlanger & Neumann col.)</td>
<td>= Moggio River</td>
</tr>
<tr>
<td>Monte Tschoki</td>
<td>at ca 08°12’N 41°43’E</td>
</tr>
<tr>
<td>Moyale</td>
<td>ca 09°45’N 35°33’E</td>
</tr>
<tr>
<td>Mugher River gorge</td>
<td>03°32’N 39°03’E</td>
</tr>
<tr>
<td>Mugher River mouth, near</td>
<td>at 09°24’N 38°39’E</td>
</tr>
<tr>
<td>Mui</td>
<td>09°47’N 37°53’E</td>
</tr>
<tr>
<td>Mulu (farm)</td>
<td>05°50’N 35°45’E</td>
</tr>
<tr>
<td>Murle</td>
<td>09°24’N 38°39’E</td>
</tr>
<tr>
<td>Murri</td>
<td>05°10’N 36°13’E</td>
</tr>
<tr>
<td>Nachisar National Park</td>
<td>04°14’N 40°42’E</td>
</tr>
<tr>
<td>Nazareth</td>
<td>05°15’N 39°53’E</td>
</tr>
<tr>
<td>Neghelli</td>
<td>05°16’N 39°46’E</td>
</tr>
<tr>
<td>Neghelli, 20 km E of</td>
<td>05°13’N 39°52’E</td>
</tr>
<tr>
<td>Neghelli, 32 km E of</td>
<td>05°15’N 39°53’E</td>
</tr>
<tr>
<td>Neghelli, 35 km E of</td>
<td>05°13’N 39°56’E</td>
</tr>
<tr>
<td>Neghelli, 40 km E of</td>
<td>05°23’N 40°16’E</td>
</tr>
<tr>
<td>Neghelli, 95 km E of</td>
<td>05°16’N 40°20’E</td>
</tr>
<tr>
<td>Neghelli, 100 km E of</td>
<td>05°15’N 40°21’E</td>
</tr>
<tr>
<td>Neghelli, 25 km SW of</td>
<td>05°03’N 39°32’E</td>
</tr>
<tr>
<td>Odamuda</td>
<td>ca 07°50’N 41°10’E</td>
</tr>
<tr>
<td>Omo River region (O. Neumann col.)</td>
<td>at 06°38’N 36°36’E</td>
</tr>
<tr>
<td>Omo River, near Bongosi</td>
<td>05°22’N 36°05’E</td>
</tr>
<tr>
<td>Oulancheti (Uelenciti, Welenchiti)</td>
<td>08°39’N 39°25’E</td>
</tr>
<tr>
<td>Oulancheti, 5 km E of</td>
<td>08°41’N 39°29’E</td>
</tr>
<tr>
<td>Pokwo</td>
<td>08°15’N 34°25’E</td>
</tr>
</tbody>
</table>
Polkom 08°11′N 34°17′E
Portuguese bridge 11°14′N 37°54′E
Portuguese bridge, 29 km SE of 11°10′N 38°10′E
Quezan 10°50′N 34°48′E
Ramu, Kenya 03°57′N 41°14′E
Rira (Riro) 06°46′N 39°43′E
Rokar 07°32′N 41°52′E
Rudolf (Turkana) Lake, N end of 04°35′N 36°05′E
Rugdeia Sogheira 09°40′N 41°02′E
Sagan (River) at ca 05°00′N 36°55′E
Sancurar (Sankural) 04°02′N 40°08′E
Sardo 11°58′N 41°18′E
Sassabana (Sassabane) 07°53′N 43°40′E
Scecchi River bridge, 5 km E of 08°22′N 35°49′E
Schambala Valley (Shambala River) at 05°45′N 37°10′E
Serba, Lake Zuai (E. Degen col.) (N?) shore of Lake Zawai 41
Shafartak bridge 10°06′N 38°17′E
Shalla Lake, NW corner of 07°32′N 38°25′E
Shamo Lake see Chamo Lake
Shashamane 07°12′N 38°36′E
Shave River, near 06°40′N 39°44′E
Sheikh Husein (Sheik Hussein) 07°44′N 40°42′E
Sheikh Mahomed (Sheik Mahomet) 07°20′N 40°30′E
Shimala River ca 10°45′N 34°49′E
Sibbe (Sibi region) ca 07°50′N 43°10′E
Sidam-Bale bridge 05°42′N 39°30′E
Sidam-Bale bridge, 35 km N of 05°59′N 39°35′E
Sidam-Bale bridge, 28 km N of 05°55′N 39°32′E
Sidam-Bale bridge, 15-16 km N of 05°50′N 39°42′E
Simien Mountains ca 13°15′N 38°20′E
Smith River ca 07°35′N 41°48′E
Sodere (Sodare) 08°25′N 39°24′E
Sof Omar 06°54′N 40°48′E
Sof Omar, 10 km NE of 07°05′N 40°38′E
Sololo, Kenya 03°44′N 38°41′E
Somadu (So-OMadu), Somalia 10°38′N 42°44′E
Stephanie Lake (Donaldson Smith, 11.VI.1895) 04°32′N 36°55′E
Stephanie Lake (Donaldson Smith, 16.VI.1895) ca 04°52′N 36°41′E
Stephanie Lake (Donaldson Smith, 18.VI.1895) 04°58′N 36°48′E
Stephanie Lake, W of 04°50′N 36°45′E
Stephanie Lake and Rudolf Lake, between (Donaldson Smith, 4.VII.1895) ca 05°20′N 36°38′E
Sunerdarler (Sunderarler) 06°20′N 43°00′E
Tadecia Melca (Tadeka Mullka) 09°08′N 39°51′E
Tana Lake 12°00′N 37°20′E
Tana Lake, 40 km NW of ca 12°25′N 36°50′E
Todoniang, Kenya 04°32′N 35°55′E
Tug Faf, lower region ca 06°20′N 44°20′E
Turfa (River) at 07°40′N 42°24′E

41 LARGEN & RASMUSSEN (1993: 404) inadvertently associated this locality with Lake Tana.
The lizard fauna currently recognised in Ethiopia comprises 101 species (Gekkonidae 37, Scincidae 19, Lacertidae 16, Agamidae 15, Chamaeleonidae 9, Cordylidae 3, Varanidae 2), of which no fewer than 40 are denizens of the Somali-arid zone. Such taxa have their centres of distribution in the desert and semi-desert regions of Somalia and eastern Ethiopia, although some may extend southwards into eastern Kenya (more rarely NE Tanzania) and/or northwards through Eritrea into NE Sudan (occasionally even SE Egypt). Three nominal Ethiopian endemics (Cordylus rivae, Hemidactylus jubensis and H. ophiolepis) have ecological characteristics which suggest that they may well extend into the lowlands of neighbouring territories and perhaps have their closest zoogeographic affinities with the Somali-arid fauna.

It has long been recognised that palaeogeographic and palaeoclimatic events in the Horn of Africa have created in the present dry lowlands of this region a significant centre of reptilian diversification and consequent endemicity (e.g. Parker 1942, Lanza 1990). Nevertheless, the preponderance of Somali-arid forms amongst Ethiopian lizards clearly owes much to the fact that this fauna has been rather extensively sampled and researched, most notably through the large collections accumulated by R.H.R. Taylor during the 1930s and numerous subsequent publications by H.W. Parker and B. Lanza. Twelve species (10 of them Somali-arid forms) are recorded in Ethiopia solely on the evidence of examples obtained by Taylor and four of these taxa are still known only from type specimens derived, wholly or in part, from material that he donated to the Natural History Museum in London.

In marked contrast, lizards from other parts of Ethiopia have clearly been seriously neglected. It seems extraordinary, for example, that records indicate no more than nine species which are in any way characteristic of montane habitats on
the central plateau, with only five of these being endemic. *Chamaeleo balebicornutus* (1700-2400 m) and perhaps *C. harennae* (2400-3300 m) are believed to be associated with forest in the Bale Mountains (though the latter is also known from montane moorland and sites where natural forest cover has been destroyed). *Acanthocercus zonurus* (2000-2450 m), *Chamaeleo affinis* (1900-3100 m) and probably *Panaspis tancredii* appear to favour more open environments. *Chamaeleo bitaeniatus* (1300-2500 m), *Hemidactylus laticaudatus* (1570-2200 m), *Mabuya isselii* (1000-2500 m) and *M. megalura* (1300-3400 m) are grassland forms that extend beyond the Ethiopian borders. *Cnemaspis dickersonae*, although neither montane nor endemic, is significant in being only the third species of sylvicolous lizard yet reported from Ethiopia.

This country occupies a land area almost twice that of Kenya, with 8 times as much ground lying above 2000 m and 14 times as much occurring at altitudes in excess of 3000 m (Yalden 1983). It also has substantially greater forest cover at moderate to high elevations, yet in Kenya there are eight lizard species that are clearly inhabitants of montane grassland or moorland and at least twelve taxa predominantly associated with forest habitats (Spawls et al. 2002). Only three such species are known to be common to both countries.

The obvious inference must be that many species, including both endemic and more widespread forms, still remain to be discovered in the mountains and forests of Ethiopia; which is a conclusion having important implications for conservation. Numerous publications have drawn attention to the declining flora and fauna of Ethiopia and emphasised that it is forest (and particularly montane forest) species that are most obviously at risk (e.g. Yalden et al. 1996, Largen 2001). Because such forests are being felled at an alarming rate to provide timber, fuel-wood and cleared ground for agriculture, there seems to be a very real possibility that some sylvicolous lizards in Ethiopia may be facing extinction due to habitat destruction, before their existence in this country has even been recognised. Fortunately, the two chameleons which are the only montane forest endemics yet reported from the region are currently protected within the Bale Mountains National Park.

A great deal of further research, on museum collections but more especially in the field, is required before any deep understanding of the composition, distribution and status of the Ethiopian lizard fauna can be achieved. The need for additional information has become particularly urgent in highland regions with an unstable, often rapidly degrading, environment and we would like to hope that the present interim contribution will encourage and perhaps assist the development of such future studies.

ACKNOWLEDGEMENTS

We are most grateful to the following curators and institutions for the loan of specimens from their collections or the provision of data relating to such material: Ted Daeschler (ANSP), Robert Drewes (CAS), Alan Resetar (FMNH), José Rosado (MCZ), Alain Dubois and Ivan Ineich (MNHN), Franco Andreone (MRSN), Giuliano Doria (MSNG), Stefano Scali (MSNM), Benedetto Lanza and Marta Poggesi (MZUF), Katama Amberbir (NHMAA), Eduard Stöckli (NMB), Michael Apel (NSMW), Gunther Köhler (SMF), Ronald Crombie (USNM), Wolfgang Böhme (ZFMK), Rainer Günther (ZMB), and Alexander Haas (ZMH).

Special thanks are due to Colin McCarthy at the Natural History Museum in London, for facilitating numerous visits to that institution and responding to countless requests for assistance with unfailing generosity and good humour. Without such help this publication would not have been possible. Also much appreciated is the additional information, advice
and comment kindly provided by Nicolas Arnold, Donald Broadley, Gerhard Nikolaus and Colin Tilbury. Stephenson Spawls is greatly indebted to a number of colleagues in Addis Ababa: Sisay Taye who obtained examples of several little-known reptiles from eastern Ethiopia and much information about their natural history, Haile Demissie of the Sandford School for his assistance with fieldwork in the Derba region, Afework Bekelle and Beyene Petros at Addis Ababa University for their help with collecting permits.

The contribution of National Museums Liverpool, which furnished time and facilities for Malcolm J. Largen's research in addition to financial support for travel, is gratefully acknowledged.

REFERENCES

Lizards of Ethiopia

101

Fig. 1. — *Agama doriae* (NHMAA 2003.09: male) from the Mugher River gorge.

Fig. 2. — *Agama doriae* (NHMAA 2003.08: female) from the Mugher River gorge.
Fig. 3. — *Agama robecchii* (NHMAA 2000.01) from Aware.

Fig. 4. — *Xenagama batillifera* from Gildessa.
Fig. 5. — *Xenagama taylori* (NHMAA 2000.07: male) from Dagah Bur.

Fig. 6. — *Chamaeleo affinis* from Goba.
Fig. 7. — *Chamaeleo africanus* from Lefe Isa.

Fig. 8. — *Chamaeleo balebicornutus* (part of the series ZFMK 63050-63058) from near the Shawe River.
Fig. 9. — *Hemidactylus isolepis* from near Turmi.

Fig. 10. — *Hemidactylus ophiolepis* from the Awash National Park.
Fig. 11. — *Hemitheconyx taylori* (NHMAA 2000.05) from Dagah Bur.

Fig. 12. — *Tarentola annularis* from Kereyu Lodge, Awash National Park.
Fig. 13. — *Mabuya brevicollis* (neonate) from Dagah Bur.

Fig. 14. — *Mabuya wingatii* from Bahar Dar.